These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 28911546)

  • 1. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings.
    Yeh WJ; Hsia SM; Lee WH; Wu CH
    J Food Drug Anal; 2017 Jan; 25(1):84-92. PubMed ID: 28911546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Antiglycation and Methylglyoxal Trapping Effect of Peppermint Leaf (
    Fecka I; Bednarska K; Kowalczyk A
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary polyphenols: regulate the advanced glycation end products-RAGE axis and the microbiota-gut-brain axis to prevent neurodegenerative diseases.
    Li Y; Peng Y; Shen Y; Zhang Y; Liu L; Yang X
    Crit Rev Food Sci Nutr; 2023; 63(29):9816-9842. PubMed ID: 35587161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycation and Antioxidants: Hand in the Glove of Antiglycation and Natural Antioxidants.
    Khanam A; Ahmad S; Husain A; Rehman S; Farooqui A; Yusuf MA
    Curr Protein Pept Sci; 2020; 21(9):899-915. PubMed ID: 32039678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: An emerging biological factor in cancer onset and progression.
    Lin JA; Wu CH; Lu CC; Hsia SM; Yen GC
    Mol Nutr Food Res; 2016 Aug; 60(8):1850-64. PubMed ID: 26774083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of polyphenols from black chokeberry on advanced glycation end-products (AGEs) formation.
    Zhao W; Cai P; Zhang N; Wu T; Sun A; Jia G
    Food Chem; 2022 Oct; 392():133295. PubMed ID: 35636190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycation-induced age-related illnesses, antiglycation and drug delivery strategies.
    Abdelkader H; Mustafa WW; Alqahtani AM; Alsharani S; Al Fatease A; Alany RG
    J Pharm Pharmacol; 2022 Nov; 74(11):1546-1567. PubMed ID: 35972442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mechanisms of Inhibition of Advanced Glycation End Products Formation through Polyphenols in Hyperglycemic Condition.
    Khangholi S; Majid FA; Berwary NJ; Ahmad F; Aziz RB
    Planta Med; 2016 Jan; 82(1-2):32-45. PubMed ID: 26550791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do all roads lead to the Rome? The glycation perspective!
    Ahmad S; Akhter F; Shahab U; Rafi Z; Khan MS; Nabi R; Khan MS; Ahmad K; Ashraf JM; Moinuddin
    Semin Cancer Biol; 2018 Apr; 49():9-19. PubMed ID: 29113952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycation of β-lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems.
    Kong Y; Li X; Zheng T; Lv L
    Food Chem; 2015 Sep; 183():36-42. PubMed ID: 25863607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyphenols and AGEs/RAGE axis. Trends and challenges.
    González I; Morales MA; Rojas A
    Food Res Int; 2020 Mar; 129():108843. PubMed ID: 32036875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel advances in inhibiting advanced glycation end product formation using natural compounds.
    Song Q; Liu J; Dong L; Wang X; Zhang X
    Biomed Pharmacother; 2021 Aug; 140():111750. PubMed ID: 34051615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assay for advanced glycation end products generating intracellular oxidative stress through binding to its receptor.
    Kobori T; Ganesh D; Kumano-Kuramochi M; Torigoe K; Machida S
    Anal Biochem; 2020 Dec; 611():114018. PubMed ID: 33186591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells.
    Zhou Q; Cheng KW; Gong J; Li ETS; Wang M
    Biochem Pharmacol; 2019 Aug; 166():231-241. PubMed ID: 31158339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents.
    Maietta M; Colombo R; Lavecchia R; Sorrenti M; Zuorro A; Papetti A
    Food Res Int; 2017 Oct; 100(Pt 1):780-790. PubMed ID: 28873750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of saturated and unsaturated fatty acids on dicarbonyl-albumin derived advanced glycation end products in vitro.
    Peake B; Ghetia M; Gerber C; Costabile M; Deo P
    Amino Acids; 2022 May; 54(5):721-732. PubMed ID: 34424383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edaravone protected human brain microvascular endothelial cells from methylglyoxal-induced injury by inhibiting AGEs/RAGE/oxidative stress.
    Li W; Xu H; Hu Y; He P; Ni Z; Xu H; Zhang Z; Dai H
    PLoS One; 2013; 8(9):e76025. PubMed ID: 24098758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phloretin and its methylglyoxal adduct: Implications against advanced glycation end products-induced inflammation in endothelial cells.
    Zhou Q; Gong J; Wang M
    Food Chem Toxicol; 2019 Jul; 129():291-300. PubMed ID: 31059746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanidin-3-rutinoside attenuates methylglyoxal-induced protein glycation and DNA damage via carbonyl trapping ability and scavenging reactive oxygen species.
    Thilavech T; Ngamukote S; Belobrajdic D; Abeywardena M; Adisakwattana S
    BMC Complement Altern Med; 2016 May; 16():138. PubMed ID: 27215203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bombax ceiba (Linn.) calyxes ameliorate methylglyoxal-induced oxidative stress via modulation of RAGE expression: identification of active phytometabolites by GC-MS analysis.
    Komati A; Anand A; Shaik H; Mudiam MKR; Suresh Babu K; Tiwari AK
    Food Funct; 2020 Jun; 11(6):5486-5497. PubMed ID: 32500907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.