These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 28911863)
1. The crystal structure of the Pyrococcus abyssi mono-functional methyltransferase PaTrm5b. Wu J; Jia Q; Wu S; Zeng H; Sun Y; Wang C; Ge R; Xie W Biochem Biophys Res Commun; 2017 Nov; 493(1):240-245. PubMed ID: 28911863 [TBL] [Abstract][Full Text] [Related]
2. Structural insight into the methyltransfer mechanism of the bifunctional Trm5. Wang C; Jia Q; Zeng J; Chen R; Xie W Sci Adv; 2017 Dec; 3(12):e1700195. PubMed ID: 29214216 [TBL] [Abstract][Full Text] [Related]
3. Crystal structures of the bifunctional tRNA methyltransferase Trm5a. Wang C; Jia Q; Chen R; Wei Y; Li J; Ma J; Xie W Sci Rep; 2016 Sep; 6():33553. PubMed ID: 27629654 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5. Goto-Ito S; Ito T; Ishii R; Muto Y; Bessho Y; Yokoyama S Proteins; 2008 Sep; 72(4):1274-89. PubMed ID: 18384044 [TBL] [Abstract][Full Text] [Related]
5. Evolution of tRNAPhe:imG2 methyltransferases involved in the biosynthesis of wyosine derivatives in Archaea. Urbonavičius J; Rutkienė R; Lopato A; Tauraitė D; Stankevičiūtė J; Aučynaitė A; Kaliniene L; van Tilbeurgh H; Meškys R RNA; 2016 Dec; 22(12):1871-1883. PubMed ID: 27852927 [TBL] [Abstract][Full Text] [Related]
6. Conservation of structure and mechanism by Trm5 enzymes. Christian T; Gamper H; Hou YM RNA; 2013 Sep; 19(9):1192-9. PubMed ID: 23887145 [TBL] [Abstract][Full Text] [Related]
7. The crystal structure of Pyrococcus abyssi tRNA (uracil-54, C5)-methyltransferase provides insights into its tRNA specificity. Walbott H; Leulliot N; Grosjean H; Golinelli-Pimpaneau B Nucleic Acids Res; 2008 Sep; 36(15):4929-40. PubMed ID: 18653523 [TBL] [Abstract][Full Text] [Related]
8. Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea. de Crécy-Lagard V; Brochier-Armanet C; Urbonavicius J; Fernandez B; Phillips G; Lyons B; Noma A; Alvarez S; Droogmans L; Armengaud J; Grosjean H Mol Biol Evol; 2010 Sep; 27(9):2062-77. PubMed ID: 20382657 [TBL] [Abstract][Full Text] [Related]
9. Identity elements required for enzymatic formation of N2,N2-dimethylguanosine from N2-monomethylated derivative and its possible role in avoiding alternative conformations in archaeal tRNA. Urbonavicius J; Armengaud J; Grosjean H J Mol Biol; 2006 Mar; 357(2):387-99. PubMed ID: 16434050 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of wyosine derivatives in tRNA(Phe) of Archaea: role of a remarkable bifunctional tRNA(Phe):m1G/imG2 methyltransferase. Urbonavičius J; Meškys R; Grosjean H RNA; 2014 Jun; 20(6):747-53. PubMed ID: 24837075 [TBL] [Abstract][Full Text] [Related]
11. Recognition of guanosine by dissimilar tRNA methyltransferases. Sakaguchi R; Giessing A; Dai Q; Lahoud G; Liutkeviciute Z; Klimasauskas S; Piccirilli J; Kirpekar F; Hou YM RNA; 2012 Sep; 18(9):1687-701. PubMed ID: 22847817 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of the radical SAM enzyme catalyzing tricyclic modified base formation in tRNA. Suzuki Y; Noma A; Suzuki T; Senda M; Senda T; Ishitani R; Nureki O J Mol Biol; 2007 Oct; 372(5):1204-14. PubMed ID: 17727881 [TBL] [Abstract][Full Text] [Related]
13. N2-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosylmethionine-dependent methyltransferase, conserved in Archaea and Eukaryota. Armengaud J; Urbonavicius J; Fernandez B; Chaussinand G; Bujnicki JM; Grosjean H J Biol Chem; 2004 Aug; 279(35):37142-52. PubMed ID: 15210688 [TBL] [Abstract][Full Text] [Related]
14. Trm5 and TrmD: Two Enzymes from Distinct Origins Catalyze the Identical tRNA Modification, m¹G37. Goto-Ito S; Ito T; Yokoyama S Biomolecules; 2017 Mar; 7(1):. PubMed ID: 28335556 [TBL] [Abstract][Full Text] [Related]
15. Yeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferase. Lee C; Kramer G; Graham DE; Appling DR J Biol Chem; 2007 Sep; 282(38):27744-53. PubMed ID: 17652090 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of the human tRNA-(N1G37) methyltransferase (TRM5) and comparison to the Escherichia coli TrmD protein. Brulé H; Elliott M; Redlak M; Zehner ZE; Holmes WM Biochemistry; 2004 Jul; 43(28):9243-55. PubMed ID: 15248782 [TBL] [Abstract][Full Text] [Related]
17. Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase. Guelorget A; Roovers M; Guérineau V; Barbey C; Li X; Golinelli-Pimpaneau B Nucleic Acids Res; 2010 Oct; 38(18):6206-18. PubMed ID: 20483913 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of N-methylation by the tRNA m1G37 methyltransferase Trm5. Christian T; Lahoud G; Liu C; Hoffmann K; Perona JJ; Hou YM RNA; 2010 Dec; 16(12):2484-92. PubMed ID: 20980671 [TBL] [Abstract][Full Text] [Related]
19. Biochemical Pathways Leading to the Formation of Wyosine Derivatives in tRNA of Archaea. Urbonavičius J; Tauraitė D Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33276555 [TBL] [Abstract][Full Text] [Related]