BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28911939)

  • 41. Sensory irritation effects of methyl ethyl ketone and its receptor activation mechanism.
    Hansen LF; Knudsen A; Nielsen GD
    Pharmacol Toxicol; 1992 Sep; 71(3 Pt 1):201-8. PubMed ID: 1438043
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computer-based bioassay for evaluation of sensory irritation of airborne chemicals and its limit of detection.
    Alarie Y
    Arch Toxicol; 1998 Apr; 72(5):277-82. PubMed ID: 9630013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensory irritation: risk assessment approaches.
    Nielsen GD; Wolkoff P; Alarie Y
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):6-18. PubMed ID: 17241726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Concentration × time analyses of sensory irritants revisited: Weight of evidence or the toxic load approach. That is the question.
    Pauluhn J
    Toxicol Lett; 2019 Nov; 316():94-108. PubMed ID: 31499141
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomarkers and chemosensory irritations.
    Norbäck D; Wieslander G
    Int Arch Occup Environ Health; 2002 Jun; 75(5):298-304. PubMed ID: 11981668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sensory and pulmonary irritation with exposure to methyl isocyanate.
    Ferguson JS; Schaper M; Stock MF; Weyel DA; Alarie Y
    Toxicol Appl Pharmacol; 1986 Feb; 82(2):329-35. PubMed ID: 3945958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of a method used to test for potential toxicity of carpet emissions.
    Stadler JC; Dudek BR; Kaempfe TA; Christoph GR; Hansen JF
    Food Chem Toxicol; 1994 Nov; 32(11):1073-87. PubMed ID: 7959463
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Does the modern office environment desiccate the eyes?].
    Wolkoff P; Nøjgaard JK; Franck C; Skov PG
    Ugeskr Laeger; 2006 Nov; 168(45):3893-6. PubMed ID: 17118249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of the sensory irritation test (Alarie test) for the assessment of respiratory tract irritation.
    Bos PM; Busschers M; Arts JH
    J Occup Environ Med; 2002 Oct; 44(10):968-76. PubMed ID: 12391777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The involvement of TRP channels in sensory irritation: a mechanistic approach toward a better understanding of the biological effects of local irritants.
    Lehmann R; Schöbel N; Hatt H; van Thriel C
    Arch Toxicol; 2016 Jun; 90(6):1399-413. PubMed ID: 27037703
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of human sensory irritation due to ethyl acrylate: the appropriateness of time-weighted average concentration × time models for varying concentrations.
    Kleinbeck S; Schäper M; Zimmermann A; Blaszkewicz M; Brüning T; van Thriel C
    Arch Toxicol; 2017 Sep; 91(9):3051-3064. PubMed ID: 28204865
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Risk assessment of sensory irritants in indoor air--a case study in a French school.
    Meininghaus R; Kouniali A; Mandin C; Cicolella A
    Environ Int; 2003 Jan; 28(7):553-7. PubMed ID: 12504150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of the sensory irritation potential of volatile organic chemicals from carpets--alone and in combination.
    Stadler JC; Kennedy GL
    Food Chem Toxicol; 1996; 34(11-12):1125-30. PubMed ID: 9119325
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Derivation of an occupational exposure limit for inorganic borates using a weight of evidence approach.
    Maier A; Vincent M; Hack E; Nance P; Ball W
    Regul Toxicol Pharmacol; 2014 Apr; 68(3):424-37. PubMed ID: 24525063
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure-activity relationships of airway irritating aliphatic amines. Receptor activation mechanisms and predicted industrial exposure limits.
    Nielsen GD; Yamagiwa M
    Chem Biol Interact; 1989; 71(2-3):223-44. PubMed ID: 2598299
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ethyl acrylate: influence of sex or atopy on perceptual ratings and eye blink frequency.
    Sucker K; Hoffmeyer F; Monsé C; Jettkant B; Berresheim H; Rosenkranz N; Raulf M; Bünger J; Brüning T
    Arch Toxicol; 2019 Oct; 93(10):2913-2926. PubMed ID: 31511936
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Airway effects of repeated exposures to ozone-initiated limonene oxidation products as model of indoor air mixtures.
    Wolkoff P; Clausen PA; Larsen ST; Hammer M; Nielsen GD
    Toxicol Lett; 2012 Mar; 209(2):166-72. PubMed ID: 22212438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sensory irritation structure-activity study of inhaled aldehydes in B6C3F1 and Swiss-Webster mice.
    Steinhagen WH; Barrow CS
    Toxicol Appl Pharmacol; 1984 Mar; 72(3):495-503. PubMed ID: 6710500
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mosquito coil smoke inhalation toxicity. Part I: validation of test approach and acute inhalation toxicity.
    Pauluhn J
    J Appl Toxicol; 2006; 26(3):269-78. PubMed ID: 16547916
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toxicological responses in SW mice exposed to inhaled pyrolysates of polymer/tobacco mixtures and blended tobacco.
    Werley MS; Lee KM; Lemus-Olalde R
    Inhal Toxicol; 2009 Dec; 21(14):1186-99. PubMed ID: 19922405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.