BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28911973)

  • 41. Sodium nitrite-induced oxidative stress causes membrane damage, protein oxidation, lipid peroxidation and alters major metabolic pathways in human erythrocytes.
    Ansari FA; Ali SN; Mahmood R
    Toxicol In Vitro; 2015 Oct; 29(7):1878-86. PubMed ID: 26231821
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of N-adamantyl-4-methylthiazol-2-amine on hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats.
    Yang SJ; Je Lee W; Kim EA; Dal Nam K; Hahn HG; Young Choi S; Cho SW
    Eur J Pharmacol; 2014 Aug; 736():26-34. PubMed ID: 24797782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relation of erythrocyte Na+-K+ ATPase activity and cholesterol and oxidative stress in patients with type 2 diabetes mellitus.
    Konukoglu D; Kemerli GD; Sabuncu T; Hatemi H
    Clin Invest Med; 2003 Dec; 26(6):279-84. PubMed ID: 14690302
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gender differences in alcohol-induced oxidative stress and altered membrane properties in erythrocytes of rats.
    Reddy KR; Reddy VD; Padmavathi P; Kavitha G; Saradamma B; Varadacharyulu NC
    Indian J Biochem Biophys; 2013 Feb; 50(1):32-9. PubMed ID: 23617072
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hemoglobin degradation, lipid peroxidation, and inhibition of Na+/K(+)-ATPase in rat erythrocytes exposed to acrylonitrile.
    Farooqui MY; Mumtaz MM; Ghanayem BI; Ahmed AE
    J Biochem Toxicol; 1990; 5(4):221-7. PubMed ID: 1965727
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rapamycin alleviates oxidative stress-induced damage in rat erythrocytes.
    Singh AK; Singh S; Garg G; Rizvi SI
    Biochem Cell Biol; 2016 Oct; 94(5):471-479. PubMed ID: 27633009
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ethanol induced oxidative stress and membrane injury in rat erythrocytes.
    Sözmen EY; Tanyalçin T; Onat T; Kutay F; Erlaçin S
    Eur J Clin Chem Clin Biochem; 1994 Oct; 32(10):741-4. PubMed ID: 7865612
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ceranib-2-induced suicidal erythrocyte death.
    Signoretto E; Zierle J; Bhuyan AA; Castagna M; Lang F
    Cell Biochem Funct; 2016 Jul; 34(5):359-66. PubMed ID: 27291470
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Triggering of Erythrocyte Death by Triparanol.
    Officioso A; Manna C; Alzoubi K; Lang F
    Toxins (Basel); 2015 Aug; 7(8):3359-71. PubMed ID: 26305256
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increased eryptosis in smokers is associated with the antioxidant status and C-reactive protein levels.
    Attanzio A; Frazzitta A; Vasto S; Tesoriere L; Pintaudi AM; Livrea MA; Cilla A; Allegra M
    Toxicology; 2019 Jan; 411():43-48. PubMed ID: 30385265
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases.
    Bissinger R; Bhuyan AAM; Qadri SM; Lang F
    FEBS J; 2019 Mar; 286(5):826-854. PubMed ID: 30028073
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxidative stress and suicidal erythrocyte death.
    Lang F; Abed M; Lang E; Föller M
    Antioxid Redox Signal; 2014 Jul; 21(1):138-53. PubMed ID: 24359125
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulations of rabbit erythrocyte ATPase activities induced by in vitro and in vivo exposure to ethanol.
    Rasić-Marković A; Krstić D; Vujović Z; Jakovljevic V; Stanojlović O; Hrncić D; Djurić D; Loncar-Stevanović H
    Mol Cell Biochem; 2008 Jan; 308(1-2):111-6. PubMed ID: 17938866
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced apoptotic death of erythrocytes induced by the mycotoxin ochratoxin A.
    Jilani K; Lupescu A; Zbidah M; Abed M; Shaik N; Lang F
    Kidney Blood Press Res; 2012; 36(1):107-18. PubMed ID: 23095759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Para-tertiary butyl catechol induces eryptosis in vitro via oxidative stress and hemoglobin leakage in human erythrocytes.
    Vishalakshi GJ; Hemshekhar M; Kemparaju K; Girish KS
    Toxicol In Vitro; 2018 Oct; 52():286-296. PubMed ID: 30016652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. C-peptide, Na+,K(+)-ATPase, and diabetes.
    Vague P; Coste TC; Jannot MF; Raccah D; Tsimaratos M
    Exp Diabesity Res; 2004; 5(1):37-50. PubMed ID: 15198370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasma methylglyoxal and glyoxal are elevated and related to early membrane alteration in young, complication-free patients with Type 1 diabetes.
    Han Y; Randell E; Vasdev S; Gill V; Gadag V; Newhook LA; Grant M; Hagerty D
    Mol Cell Biochem; 2007 Nov; 305(1-2):123-31. PubMed ID: 17594057
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficacy of Caffeic Acid on Diabetes and Its Complications in the Mouse.
    Oršolić N; Sirovina D; Odeh D; Gajski G; Balta V; Šver L; Jazvinšćak Jembrek M
    Molecules; 2021 May; 26(11):. PubMed ID: 34071554
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of Enhanced Phagocytosis of Glycated Erythrocytes on Human Endothelial Cell Functions.
    Turpin C; Apalama ML; Carnero B; Otero-Cacho A; Munuzuri AP; Flores-Arias MT; Vélia E; Meilhac O; Bourdon E; Álvarez E; Rondeau P
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883644
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Glycated LDL generates reactive species that damage cell components, oxidize hemoglobin and alter surface morphology in human erythrocytes.
    Wani MJ; Arif A; Salman KA; Mahmood R
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):132257. PubMed ID: 38729492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.