These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 28912238)
1. Biological fabrication of cellulose fibers with tailored properties. Natalio F; Fuchs R; Cohen SR; Leitus G; Fritz-Popovski G; Paris O; Kappl M; Butt HJ Science; 2017 Sep; 357(6356):1118-1122. PubMed ID: 28912238 [TBL] [Abstract][Full Text] [Related]
2. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions. Natalio F; Tahir MN; Friedrich N; Köck M; Fritz-Popovski G; Paris O; Paschke R J Struct Biol; 2016 Jun; 194(3):292-302. PubMed ID: 26965558 [TBL] [Abstract][Full Text] [Related]
3. Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling. Wang L; Cook A; Patrick JW; Chen XY; Ruan YL Plant J; 2014 May; 78(4):686-96. PubMed ID: 24654806 [TBL] [Abstract][Full Text] [Related]
4. [Synthesis of cellulose in cotton fibers]. KURSANOV AL; VYSKREBENTSEVA EN Biokhimiia; 1953; 18(4):448-51. PubMed ID: 13219093 [No Abstract] [Full Text] [Related]
5. [Research on and the determination of artificial cellulose fibers in cotton wool]. BRUNELLO G Boll Chim Farm; 1960 Jul; 99():460-3. PubMed ID: 13805296 [No Abstract] [Full Text] [Related]
6. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Oun AA; Rhim JW Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095 [TBL] [Abstract][Full Text] [Related]
7. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis. Sun X; Gong SY; Nie XY; Li Y; Li W; Huang GQ; Li XB Physiol Plant; 2015 Jul; 154(3):420-32. PubMed ID: 25534543 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring. Pan H; Chen G; Chen Y; Di Carlo A; Mayer MA; Shen S; Chen C; Li W; Subramaniam S; Huang H; Tai H; Jiang Y; Xie G; Su Y; Chen J Biosens Bioelectron; 2023 Feb; 222():114999. PubMed ID: 36521206 [TBL] [Abstract][Full Text] [Related]
9. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Abidi N; Cabrales L; Haigler CH Carbohydr Polym; 2014 Jan; 100():9-16. PubMed ID: 24188832 [TBL] [Abstract][Full Text] [Related]
10. Vaccination of biological cellulose fibers with glucose: a gateway to novel nanocomposites. Fahmy TY; Mobarak F Int J Biol Macromol; 2008 Jan; 42(1):52-4. PubMed ID: 17950824 [TBL] [Abstract][Full Text] [Related]
11. Quantitative estimate of the effect of cellulase components during degradation of cotton fibers. Wang LS; Zhang YZ; Yang H; Gao PJ Carbohydr Res; 2004 Mar; 339(4):819-24. PubMed ID: 14980825 [TBL] [Abstract][Full Text] [Related]
12. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development. Ding M; Jiang Y; Cao Y; Lin L; He S; Zhou W; Rong J Gene; 2014 Feb; 535(2):273-85. PubMed ID: 24279997 [TBL] [Abstract][Full Text] [Related]
13. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Reddy N; Yang Y Bioresour Technol; 2009 Jul; 100(14):3563-9. PubMed ID: 19327987 [TBL] [Abstract][Full Text] [Related]
14. Spin Probe Multi-Frequency EPR Study of Unprocessed Cotton Fibers. Marek A; Voinov MA; Smirnov AI Cell Biochem Biophys; 2017 Jun; 75(2):211-226. PubMed ID: 28271339 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of GhPLDα1 and its relationship with secondary cell wall thickening in cotton fibers. Tang K; Liu JY Acta Biochim Biophys Sin (Shanghai); 2017 Jan; 49(1):33-43. PubMed ID: 27864277 [TBL] [Abstract][Full Text] [Related]
16. Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen. Reddy N; Yang Y Biotechnol Bioeng; 2007 Aug; 97(5):1021-7. PubMed ID: 17221888 [TBL] [Abstract][Full Text] [Related]
17. Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne. Islam MS; Fang DD; Thyssen GN; Delhom CD; Liu Y; Kim HJ BMC Plant Biol; 2016 Feb; 16():36. PubMed ID: 26833213 [TBL] [Abstract][Full Text] [Related]
18. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. Tuttle JR; Nah G; Duke MV; Alexander DC; Guan X; Song Q; Chen ZJ; Scheffler BE; Haigler CH BMC Genomics; 2015 Jun; 16(1):477. PubMed ID: 26116072 [TBL] [Abstract][Full Text] [Related]
19. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.). Kim HJ; Triplett BA; Zhang HB; Lee MK; Hinchliffe DJ; Li P; Fang DD Gene; 2012 Feb; 494(2):181-9. PubMed ID: 22200568 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense. Li PT; Wang M; Lu QW; Ge Q; Rashid MHO; Liu AY; Gong JW; Shang HH; Gong WK; Li JW; Song WW; Guo LX; Su W; Li SQ; Guo XP; Shi YZ; Yuan YL BMC Genomics; 2017 Sep; 18(1):705. PubMed ID: 28886694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]