These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28912399)

  • 1. [Adoptive Cell Therapy with Immune Checkpoint Blockade].
    Aruga A
    Gan To Kagaku Ryoho; 2017 Sep; 44(9):737-741. PubMed ID: 28912399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeric PD-1:28 Receptor Upgrades Low-Avidity T cells and Restores Effector Function of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy.
    Schlenker R; Olguín-Contreras LF; Leisegang M; Schnappinger J; Disovic A; Rühland S; Nelson PJ; Leonhardt H; Harz H; Wilde S; Schendel DJ; Uckert W; Willimsky G; Noessner E
    Cancer Res; 2017 Jul; 77(13):3577-3590. PubMed ID: 28533272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Combination Therapy of Immune Checkpoint Inhibitors].
    Kitano S
    Gan To Kagaku Ryoho; 2017 Sep; 44(9):727-732. PubMed ID: 28912397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges.
    Kyi C; Postow MA
    Immunotherapy; 2016 Jun; 8(7):821-37. PubMed ID: 27349981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Adoptive immunotherapy utilizing cancer antigen-specific T-cell receptors].
    Tanimoto K; Fujiwara H
    Rinsho Ketsueki; 2016; 57(11):2355-2364. PubMed ID: 27941286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Therapeutic Cancer Vaccine and Immune Checkpoint Inhibitor].
    Mimura K; Kono K
    Gan To Kagaku Ryoho; 2017 Sep; 44(9):733-736. PubMed ID: 28912398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered cells for costimulatory enhancement combined with IL-21 enhance the generation of PD-1-disrupted CTLs for adoptive immunotherapy.
    Shao J; Xu Q; Su S; Meng F; Zou Z; Chen F; Du J; Qian X; Liu B
    Cell Immunol; 2017 Oct; 320():38-45. PubMed ID: 28935250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system.
    Pico de Coaña Y; Choudhury A; Kiessling R
    Trends Mol Med; 2015 Aug; 21(8):482-91. PubMed ID: 26091825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Cancer immunotherapy by immuno-checkpoint blockade].
    Kawakami Y
    Rinsho Ketsueki; 2015 Oct; 56(10):2186-94. PubMed ID: 26458459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition.
    Houot R; Schultz LM; Marabelle A; Kohrt H
    Cancer Immunol Res; 2015 Oct; 3(10):1115-22. PubMed ID: 26438444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.
    Figueroa JA; Reidy A; Mirandola L; Trotter K; Suvorava N; Figueroa A; Konala V; Aulakh A; Littlefield L; Grizzi F; Rahman RL; Jenkins MR; Musgrove B; Radhi S; D'Cunha N; D'Cunha LN; Hermonat PL; Cobos E; Chiriva-Internati M
    Int Rev Immunol; 2015 Mar; 34(2):154-87. PubMed ID: 25901860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The New Era of Cancer Immunotherapy: Manipulating T-Cell Activity to Overcome Malignancy.
    Khalil DN; Budhu S; Gasmi B; Zappasodi R; Hirschhorn-Cymerman D; Plitt T; De Henau O; Zamarin D; Holmgaard RB; Murphy JT; Wolchok JD; Merghoub T
    Adv Cancer Res; 2015; 128():1-68. PubMed ID: 26216629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of checkpoint inhibitors with other agents as a strategy to improve anti-cancer effect - a glimpse to the future.
    Karamouzis MV; Papavassiliou AG
    Expert Opin Investig Drugs; 2018 Jul; 27(7):569-572. PubMed ID: 29958097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adoptive T cell therapy for cancer in the clinic.
    June CH
    J Clin Invest; 2007 Jun; 117(6):1466-76. PubMed ID: 17549249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The repetitive immune cell transfer therapy combining non-myelosuppressive chemotherapy for patients with advanced and refractory cancer].
    Toh U; Fujii T; Tayama K; Yanaga H; Yokoyama G; Yamaguchi M; Horiuchi H; Sasatomi T; Takamori S; Shirouzu K; Seki N; Yamana H
    Gan To Kagaku Ryoho; 2004 Oct; 31(11):1649-51. PubMed ID: 15553672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the efficacy of adoptive cellular therapy by targeting tumor-induced immunosuppression.
    Beavis PA; Slaney CY; Kershaw MH; Neeson PJ; Darcy PK
    Immunotherapy; 2015; 7(5):499-512. PubMed ID: 26065476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment.
    Blake SJ; Ching AL; Kenna TJ; Galea R; Large J; Yagita H; Steptoe RJ
    PLoS One; 2015; 10(3):e0119483. PubMed ID: 25741704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies to genetically engineer T cells for cancer immunotherapy.
    Spear TT; Nagato K; Nishimura MI
    Cancer Immunol Immunother; 2016 Jun; 65(6):631-49. PubMed ID: 27138532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining targeted therapy with immunotherapy. Can 1+1 equal more than 2?
    Robert L; Ribas A; Hu-Lieskovan S
    Semin Immunol; 2016 Feb; 28(1):73-80. PubMed ID: 26861544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.