These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28912465)

  • 21. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene.
    Velasco J; Jing L; Bao W; Lee Y; Kratz P; Aji V; Bockrath M; Lau CN; Varma C; Stillwell R; Smirnov D; Zhang F; Jung J; MacDonald AH
    Nat Nanotechnol; 2012 Jan; 7(3):156-60. PubMed ID: 22266634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dipolar excitons, spontaneous phase coherence, and superfluid-insulator transition in bilayer quantum Hall systems at nu = 1.
    Yang K
    Phys Rev Lett; 2001 Jul; 87(5):056802. PubMed ID: 11497797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermopower of interacting GaAs bilayer hole systems in the reentrant insulating phase near nu=1.
    Faniel S; Tutuc E; De Poortere EP; Gustin C; Vlad A; Melinte S; Shayegan M; Bayot V
    Phys Rev Lett; 2005 Feb; 94(4):046802. PubMed ID: 15783582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the Melting of a Two-Dimensional Quantum Wigner Crystal via its Screening Efficiency.
    Deng H; Pfeiffer LN; West KW; Baldwin KW; Engel LW; Shayegan M
    Phys Rev Lett; 2019 Mar; 122(11):116601. PubMed ID: 30951347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unconventional fractional quantum Hall states and Wigner crystallization in suspended Corbino graphene.
    Kumar M; Laitinen A; Hakonen P
    Nat Commun; 2018 Jul; 9(1):2776. PubMed ID: 30018365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topological phases in the zeroth Landau level of bilayer graphene.
    Papić Z; Abanin DA
    Phys Rev Lett; 2014 Jan; 112(4):046602. PubMed ID: 24580475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ground-state phase diagram of 2D electrons in a high Landau level: a density-matrix renormalization group study.
    Shibata N; Yoshioka D
    Phys Rev Lett; 2001 Jun; 86(25):5755-8. PubMed ID: 11415350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multicomponent Electron-Hole Superfluidity and the BCS-BEC Crossover in Double Bilayer Graphene.
    Conti S; Perali A; Peeters FM; Neilson D
    Phys Rev Lett; 2017 Dec; 119(25):257002. PubMed ID: 29303331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening.
    Liu X; Wang Z; Watanabe K; Taniguchi T; Vafek O; Li JIA
    Science; 2021 Mar; 371(6535):1261-1265. PubMed ID: 33737488
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of electron-hole superfluidity in double few-layer graphene.
    Zarenia M; Perali A; Neilson D; Peeters FM
    Sci Rep; 2014 Dec; 4():7319. PubMed ID: 25482584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size, dimensionality, and strong electron correlation in nanoscience.
    Brus L
    Acc Chem Res; 2014 Oct; 47(10):2951-9. PubMed ID: 25120173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Observation of spontaneous ferromagnetism in a two-dimensional electron system.
    Hossain MS; Ma MK; Rosales KAV; Chung YJ; Pfeiffer LN; West KW; Baldwin KW; Shayegan M
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32244-32250. PubMed ID: 33273119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bilayer graphene. Chemical potential and quantum Hall ferromagnetism in bilayer graphene.
    Lee K; Fallahazad B; Xue J; Dillen DC; Kim K; Taniguchi T; Watanabe K; Tutuc E
    Science; 2014 Jul; 345(6192):58-61. PubMed ID: 24994645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unconventional superconductivity in magic-angle graphene superlattices.
    Cao Y; Fatemi V; Fang S; Watanabe K; Taniguchi T; Kaxiras E; Jarillo-Herrero P
    Nature; 2018 Apr; 556(7699):43-50. PubMed ID: 29512651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scale-invariant puddles in graphene: Geometric properties of electron-hole distribution at the Dirac point.
    Najafi MN; Nezhadhaghighi MG
    Phys Rev E; 2017 Mar; 95(3-1):032112. PubMed ID: 28415230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging the electronic Wigner crystal in one dimension.
    Shapir I; Hamo A; Pecker S; Moca CP; Legeza Ö; Zarand G; Ilani S
    Science; 2019 May; 364(6443):870-875. PubMed ID: 31147516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Doped Twisted Bilayer Graphene near Magic Angles: Proximity to Wigner Crystallization, Not Mott Insulation.
    Padhi B; Setty C; Phillips PW
    Nano Lett; 2018 Oct; 18(10):6175-6180. PubMed ID: 30185049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning the effects of Landau level mixing on anisotropic transport in quantum Hall systems.
    Smith PM; Kennett MP
    J Phys Condens Matter; 2012 Feb; 24(5):055601. PubMed ID: 22227599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of σ Bonding Electrons for the Accurate Description of Electron Correlation in Graphene.
    Zheng H; Gan Y; Abbamonte P; Wagner LK
    Phys Rev Lett; 2017 Oct; 119(16):166402. PubMed ID: 29099202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.