These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28912565)

  • 1. Real-time Image Processing for Microscopy-based Label-free Imaging Flow Cytometry in a Microfluidic Chip.
    Heo YJ; Lee D; Kang J; Lee K; Chung WK
    Sci Rep; 2017 Sep; 7(1):11651. PubMed ID: 28912565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch.
    Lau AK; Wong TT; Shum HC; Wong KK; Tsia KK
    Methods Mol Biol; 2016; 1389():23-45. PubMed ID: 27460236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep imaging flow cytometry.
    Huang K; Matsumura H; Zhao Y; Herbig M; Yuan D; Mineharu Y; Harmon J; Findinier J; Yamagishi M; Ohnuki S; Nitta N; Grossman AR; Ohya Y; Mikami H; Isozaki A; Goda K
    Lab Chip; 2022 Mar; 22(5):876-889. PubMed ID: 35142325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free multiphoton imaging flow cytometry.
    Kinegawa R; Gala de Pablo J; Wang Y; Hiramatsu K; Goda K
    Cytometry A; 2023 Jul; 103(7):584-592. PubMed ID: 36799568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving Object Detection Based on Optical Flow Estimation and a Gaussian Mixture Model for Advanced Driver Assistance Systems.
    Cho J; Jung Y; Kim DS; Lee S; Jung Y
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual-freezing fluorescence imaging flow cytometry.
    Mikami H; Kawaguchi M; Huang CJ; Matsumura H; Sugimura T; Huang K; Lei C; Ueno S; Miura T; Ito T; Nagasawa K; Maeno T; Watarai H; Yamagishi M; Uemura S; Ohnuki S; Ohya Y; Kurokawa H; Matsusaka S; Sun CW; Ozeki Y; Goda K
    Nat Commun; 2020 Mar; 11(1):1162. PubMed ID: 32139684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
    Tang AHL; Lai QTK; Chung BMF; Lee KCM; Mok ATY; Yip GK; Shum AHC; Wong KKY; Tsia KK
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28715367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.
    Guo B; Lei C; Kobayashi H; Ito T; Yalikun Y; Jiang Y; Tanaka Y; Ozeki Y; Goda K
    Cytometry A; 2017 May; 91(5):494-502. PubMed ID: 28399328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and robust Fourier domain-based classification for on-chip lens-free flow cytometry.
    Cornelis B; Blinder D; Jansen B; Lagae L; Schelkens P
    Opt Express; 2018 May; 26(11):14329-14339. PubMed ID: 29877473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual characterization of biological cells by optofluidic microscope and resistive pulse sensor.
    Guo J; Chen L; Huang X; Li CM; Ai Y; Kang Y
    Electrophoresis; 2015 Feb; 36(3):420-3. PubMed ID: 25088789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image-free real-time detection and tracking of fast moving object using a single-pixel detector.
    Zhang Z; Ye J; Deng Q; Zhong J
    Opt Express; 2019 Nov; 27(24):35394-35401. PubMed ID: 31878710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-content video flow cytometry with digital cell filtering for label-free cell classification by machine learning.
    Liu C; Wang Z; Jia J; Liu Q; Su X
    Cytometry A; 2023 Apr; 103(4):325-334. PubMed ID: 36287146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-Magnetohydrodynamically Controlled Fluid Flow with Poly(3,4-ethylenedioxythiophene) Coupled to an Epitaxial Light Sheet Confocal Microscope for Image Cytometry Applications.
    Khan FZ; Hutcheson JA; Hunter CJ; Powless AJ; Benson D; Fritsch I; Muldoon TJ
    Anal Chem; 2018 Jul; 90(13):7862-7870. PubMed ID: 29873231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of imaging flow cytometry and time-lapse microscopy for the study of label-free morphology dynamics of hematopoietic cells.
    Cosette J; Moussy A; Paldi A; Stockholm D
    Cytometry A; 2017 Mar; 91(3):254-260. PubMed ID: 28248454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of non-small cell lung cancer cells based on microfluidic polarization microscopic image analysis.
    Wang Y; Wang J; Meng J; Ding G; Shi Z; Wang R; Zhang X
    Electrophoresis; 2018 Oct; ():. PubMed ID: 30378691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput label-free image cytometry and image-based classification of live Euglena gracilis.
    Lei C; Ito T; Ugawa M; Nozawa T; Iwata O; Maki M; Okada G; Kobayashi H; Sun X; Tiamsak P; Tsumura N; Suzuki K; Di Carlo D; Ozeki Y; Goda K
    Biomed Opt Express; 2016 Jul; 7(7):2703-8. PubMed ID: 27446699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-passive pixel super-resolution of time-stretch imaging.
    Chan AC; Ng HC; Bogaraju SC; So HK; Lam EY; Tsia KK
    Sci Rep; 2017 Mar; 7():44608. PubMed ID: 28303936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging Flow Cytometry for High-Throughput Phenotyping of Synthetic Cells.
    Godino E; Restrepo Sierra AM; Danelon C
    ACS Synth Biol; 2023 Jul; 12(7):2015-2028. PubMed ID: 37155828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.