BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 28912578)

  • 1. Tumour acidosis: from the passenger to the driver's seat.
    Corbet C; Feron O
    Nat Rev Cancer; 2017 Oct; 17(10):577-593. PubMed ID: 28912578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the Warburg effect: historical dogma versus current understanding.
    Vaupel P; Multhoff G
    J Physiol; 2021 Mar; 599(6):1745-1757. PubMed ID: 33347611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disrupting proton dynamics and energy metabolism for cancer therapy.
    Parks SK; Chiche J; Pouysségur J
    Nat Rev Cancer; 2013 Sep; 13(9):611-23. PubMed ID: 23969692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer.
    Chiche J; Brahimi-Horn MC; Pouysségur J
    J Cell Mol Med; 2010 Apr; 14(4):771-94. PubMed ID: 20015196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro.
    Sørensen BS; Busk M; Overgaard J; Horsman MR; Alsner J
    PLoS One; 2015; 10(8):e0134955. PubMed ID: 26274822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Connections between Cancer Cell Metabolism and the Tumor Microenvironment.
    Justus CR; Sanderlin EJ; Yang LV
    Int J Mol Sci; 2015 May; 16(5):11055-86. PubMed ID: 25988385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia and acidosis: immune suppressors and therapeutic targets.
    Damgaci S; Ibrahim-Hashim A; Enriquez-Navas PM; Pilon-Thomas S; Guvenis A; Gillies RJ
    Immunology; 2018 Jul; 154(3):354-362. PubMed ID: 29485185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment.
    Hayes C; Donohoe CL; Davern M; Donlon NE
    Cancer Lett; 2021 Mar; 500():75-86. PubMed ID: 33347908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SIRT1/HIF2α axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy.
    Corbet C; Draoui N; Polet F; Pinto A; Drozak X; Riant O; Feron O
    Cancer Res; 2014 Oct; 74(19):5507-19. PubMed ID: 25085245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of ion transporters and channels with cancer cell metabolism and the tumour microenvironment.
    Andersen AP; Moreira JM; Pedersen SF
    Philos Trans R Soc Lond B Biol Sci; 2014 Mar; 369(1638):20130098. PubMed ID: 24493746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia and energetic tumour metabolism.
    Brahimi-Horn MC; Bellot G; Pouysségur J
    Curr Opin Genet Dev; 2011 Feb; 21(1):67-72. PubMed ID: 21074987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia and cellular metabolism in tumour pathophysiology.
    Parks SK; Cormerais Y; Pouysségur J
    J Physiol; 2017 Apr; 595(8):2439-2450. PubMed ID: 28074546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invited review: Quantifying proton exchange from chemical reactions - Implications for the biochemistry of metabolic acidosis.
    Robergs RA
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():29-45. PubMed ID: 31071454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH.
    Chiche J; Ilc K; Laferrière J; Trottier E; Dayan F; Mazure NM; Brahimi-Horn MC; Pouysségur J
    Cancer Res; 2009 Jan; 69(1):358-68. PubMed ID: 19118021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Mitochondrial Metabolism Leads to Selective Eradication of Cells Adapted to Acidic Microenvironment.
    Koncošová M; Vrzáčková N; Křížová I; Tomášová P; Rimpelová S; Dvořák A; Vítek L; Rumlová M; Ruml T; Zelenka J
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoxia and Its Acid-Base Consequences: From Mountains to Malignancy.
    Swenson ER
    Adv Exp Med Biol; 2016; 903():301-23. PubMed ID: 27343105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microenvironmental and cellular consequences of altered blood flow in tumours.
    Raghunand N; Gatenby RA; Gillies RJ
    Br J Radiol; 2003; 76 Spec No 1():S11-22. PubMed ID: 15456710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH.
    Anemone A; Consolino L; Arena F; Capozza M; Longo DL
    Cancer Metastasis Rev; 2019 Jun; 38(1-2):25-49. PubMed ID: 30762162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of tumor pH and the role of carbonic anhydrase 9.
    Swietach P; Vaughan-Jones RD; Harris AL
    Cancer Metastasis Rev; 2007 Jun; 26(2):299-310. PubMed ID: 17415526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.