These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28913388)

  • 1. Dataset representing the effect of indirect band gap region of Cd-free AlGaAs buffer layer in Cu(In,Ga)Se photovoltaic cell.
    Shachi SI; Bahar AN
    Data Brief; 2017 Oct; 14():618-622. PubMed ID: 28913388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dataset demonstrating the modeling of a high performance Cu(In,Ga)Se
    Asaduzzaman M; Bahar AN; Bhuiyan MM
    Data Brief; 2017 Apr; 11():296-300. PubMed ID: 28275663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and performance analysis dataset of a CIGS solar cell with ZnS buffer layer.
    Hosen MB; Bahar AN; Ali MK; Asaduzzaman M
    Data Brief; 2017 Oct; 14():246-250. PubMed ID: 28861448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dataset on the generation of red-kinked current-voltage curves in Cu(In,Ga)Se
    Chung CH
    Data Brief; 2019 Oct; 26():104503. PubMed ID: 31667266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency.
    Asaduzzaman M; Hasan M; Bahar AN
    Springerplus; 2016; 5():578. PubMed ID: 27247875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on Preparation and Performance of High Ga CIGS Absorbers and Their Solar Cells.
    Lv X; Zheng Z; Zhao M; Wang H; Zhuang D
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparative Study of (Cd,Zn)S Buffer Layers for Cu(In,Ga)Se
    Bae D
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32244710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wet Pretreatment-Induced Modification of Cu(In,Ga)Se
    Hwang S; Larina L; Lee H; Kim S; Choi KS; Jeon C; Ahn BT; Shin B
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20920-20928. PubMed ID: 29806770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of band structure at the Zn(S,O,OH)/Cu(In,Ga)Se2 interface via rapid thermal annealing and their effect on the photovoltaic properties.
    Shin DH; Kim ST; Kim JH; Kang HJ; Ahn BT; Kwon H
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12921-7. PubMed ID: 24175717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent Electrode and Buffer Layer Combination for Reducing Carrier Recombination and Optical Loss Realizing over a 22%-Efficient Cd-Free Alkaline-Treated Cu(In,Ga)(S,Se)
    Chantana J; Kawano Y; Nishimura T; Kimoto Y; Kato T; Sugimoto H; Minemoto T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22298-22307. PubMed ID: 32320201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface Engineering of Cu(In,Ga)Se
    Wang R; Lan M; Zheng Y; Yang J; Li B; Wei SH
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15237-15245. PubMed ID: 33760577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of CdS Buffer Layer for High Efficiency CIGS Solar Cells.
    Kim D; Jang YJ; Jung HS; Kim M; Baek D; Yi J; Lee J; Choi Y
    J Nanosci Nanotechnol; 2016 May; 16(5):5074-7. PubMed ID: 27483874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells.
    Hsu W; Sutter-Fella CM; Hettick M; Cheng L; Chan S; Chen Y; Zeng Y; Zheng M; Wang HP; Chiang CC; Javey A
    Sci Rep; 2015 Nov; 5():16028. PubMed ID: 26526426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photovoltaic Performance and Interface Behaviors of Cu(In,Ga)Se2 Solar Cells with a Sputtered-Zn(O,S) Buffer Layer by High-Temperature Annealing.
    Wi JH; Kim TG; Kim JW; Lee WJ; Cho DH; Han WS; Chung YD
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17425-32. PubMed ID: 26192202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of energy band alignment at the Zn(1-x)Mg(x)O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells.
    Lee CS; Larina L; Shin YM; Al-Ammar EA; Ahn BT
    Phys Chem Chem Phys; 2012 Apr; 14(14):4789-95. PubMed ID: 22382807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal CdS Buffer Thickness to Form High-Quality CdS/Cu(In,Ga)Se
    Cho KS; Jang J; Park JH; Lee DK; Song S; Kim K; Eo YJ; Yun JH; Gwak J; Chung CH
    ACS Omega; 2020 Sep; 5(37):23983-23988. PubMed ID: 32984719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Efficiency Cu(In,Ga)Se₂ Thin Film Solar Cells Using ZnS and CdS Buffer Layers.
    Jun BM; Kim G; Kim E; Kim H; Lee DJ; Kim HS; Choi SG; Shan F; Kim SJ
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1814-1819. PubMed ID: 30469273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waste- and Cd-Free Inkjet-Printed Zn(O,S) Buffer for Cu(In,Ga)(S,Se)
    Chu VB; Siopa D; Debot A; Adeleye D; Sood M; Lomuscio A; Melchiorre M; Guillot J; Valle N; El Adib B; Rommelfangen J; Dale PJ
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13009-13021. PubMed ID: 33689261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the light soaking effect of ZnMgO buffer in CIGS solar cells.
    Kim S; Lee CS; Kim S; Chalapathy RB; Al-Ammar EA; Ahn BT
    Phys Chem Chem Phys; 2015 Jul; 17(29):19222-9. PubMed ID: 26134038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lowering Cost Approach for CIGS-Based Solar Cell Through Optimizing Band Gap Profile and Doping of Stacked Active Layers-SCAPS Modeling.
    Mabvuer FT; Nya FT; Dzifack Kenfack GM; Laref A
    ACS Omega; 2023 Jan; 8(4):3917-3928. PubMed ID: 36743006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.