BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28913637)

  • 1. Chemical characterization and identification of Pinaceae pollen by infrared microspectroscopy.
    Zimmermann B
    Planta; 2018 Jan; 247(1):171-180. PubMed ID: 28913637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen.
    Bağcıoğlu M; Zimmermann B; Kohler A
    PLoS One; 2015; 10(9):e0137899. PubMed ID: 26376486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains.
    Diehn S; Zimmermann B; Tafintseva V; Bağcıoğlu M; Kohler A; Ohlson M; Fjellheim S; Kneipp J
    Anal Bioanal Chem; 2020 Sep; 412(24):6459-6474. PubMed ID: 32350580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of pollen by vibrational spectroscopy.
    Zimmermann B
    Appl Spectrosc; 2010 Dec; 64(12):1364-73. PubMed ID: 21144154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure.
    Zimmermann B; Bağcıoğlu M; Sandt C; Kohler A
    Planta; 2015 Nov; 242(5):1237-50. PubMed ID: 26289829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Allergenic Pollen by FTIR Microspectroscopy.
    Zimmerman B; Tafintseva V; Bağcıoğlu M; Høegh Berdahl M; Kohler A
    Anal Chem; 2016 Jan; 88(1):803-11. PubMed ID: 26599685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analysis of pine pollen by using FTIR, SEM and energy-dispersive X-ray analysis].
    Wang YM; Wang HJ; Zhang ZY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Nov; 25(11):1797-800. PubMed ID: 16499047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning.
    Dell'Anna R; Lazzeri P; Frisanco M; Monti F; Malvezzi Campeggi F; Gottardini E; Bersani M
    Anal Bioanal Chem; 2009 Jul; 394(5):1443-52. PubMed ID: 19396429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen.
    Zimmermann B; Tkalčec Z; Mešić A; Kohler A
    PLoS One; 2015; 10(4):e0124240. PubMed ID: 25867755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollen identification by Fourier transform infrared photoacoustic spectroscopy.
    Parodi G; Dickerson P; Cloud J
    Appl Spectrosc; 2013 Mar; 67(3):342-8. PubMed ID: 23452500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Analysis of Pollen by FT-Raman and FTIR Spectroscopies.
    Kenđel A; Zimmermann B
    Front Plant Sci; 2020; 11():352. PubMed ID: 32296453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abietoid seed fatty acid compositions--a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae.
    Wolff RL; Lavialle O; Pédrono F; Pasquier E; Destaillats F; Marpeau AM; Angers P; Aitzetmüller K
    Lipids; 2002 Jan; 37(1):17-26. PubMed ID: 11876259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New method for pollen identification by FT-IR spectroscopy.
    Pappas CS; Tarantilis PA; Harizanis PC; Polissiou MG
    Appl Spectrosc; 2003 Jan; 57(1):23-7. PubMed ID: 14610932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insight into Taxonomy of European Mountain Pines,
    Sokołowska J; Fuchs H; Celiński K
    Plants (Basel); 2021 Jun; 10(7):. PubMed ID: 34209970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The long-range transport of Pinaceae pollen: an example in Kraków (southern Poland).
    Szczepanek K; Myszkowska D; Worobiec E; Piotrowicz K; Ziemianin M; Bielec-Bąkowska Z
    Aerobiologia (Bologna); 2017; 33(1):109-125. PubMed ID: 28255195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography.
    Kim G; Lee S; Shin S; Park Y
    Sci Rep; 2018 Jan; 8(1):1782. PubMed ID: 29379106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The production of transgenic Scots pine (Pinus sylvestris L.) via the application of transformed pollen in controlled crossings.
    Aronen TS; Nikkanen TO; Häggman HM
    Transgenic Res; 2003 Jun; 12(3):375-8. PubMed ID: 12779126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of Mie ripples in the synchrotron Fourier transform infrared spectra of spheroidal pollen grains.
    Blümel R; Lukacs R; Zimmermann B; Bağcıoğlu M; Kohler A
    J Opt Soc Am A Opt Image Sci Vis; 2018 Oct; 35(10):1769-1779. PubMed ID: 30462098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating fossils into the Pinaceae tree of life.
    Gernandt DS; Reséndiz Arias C; Terrazas T; Aguirre Dugua X; Willyard A
    Am J Bot; 2018 Aug; 105(8):1329-1344. PubMed ID: 30091785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary Characterization, Antioxidant and Hepatoprotective Activities of Polysaccharides from Taishan Pinus massoniana Pollen.
    Zhou C; Yin S; Yu Z; Feng Y; Wei K; Ma W; Ge L; Yan Z; Zhu R
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29385683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.