These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 28913844)

  • 41. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions.
    Menezes PW; Indra A; Sahraie NR; Bergmann A; Strasser P; Driess M
    ChemSusChem; 2015 Jan; 8(1):164-71. PubMed ID: 25394186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery.
    Zhang H; Qiao H; Wang H; Zhou N; Chen J; Tang Y; Li J; Huang C
    Nanoscale; 2014 Sep; 6(17):10235-42. PubMed ID: 25056728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Copper Porphyrin-Based Conjugated Mesoporous Polymer-Derived Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution.
    Cui S; Qian M; Liu X; Sun Z; Du P
    ChemSusChem; 2016 Sep; 9(17):2365-73. PubMed ID: 27530422
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER.
    Tan SM; Chua CK; Sedmidubský D; Sofer ZC; Pumera M
    Phys Chem Chem Phys; 2016 Jan; 18(3):1699-711. PubMed ID: 26675834
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons.
    Silva R; Voiry D; Chhowalla M; Asefa T
    J Am Chem Soc; 2013 May; 135(21):7823-6. PubMed ID: 23646856
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Subnanometer Cobalt-Hydroxide-Anchored N-Doped Carbon Nanotube Forest for Bifunctional Oxygen Catalyst.
    Kim JE; Lim J; Lee GY; Choi SH; Maiti UN; Lee WJ; Lee HJ; Kim SO
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1571-7. PubMed ID: 26766495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes.
    Nielson KD; van Duin AC; Oxgaard J; Deng WQ; Goddard WA
    J Phys Chem A; 2005 Jan; 109(3):493-9. PubMed ID: 16833370
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions.
    Shen M; Ruan C; Chen Y; Jiang C; Ai K; Lu L
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1207-18. PubMed ID: 25531776
    [TBL] [Abstract][Full Text] [Related]  

  • 49. When Layered Nickel-Cobalt Silicate Hydroxide Nanosheets Meet Carbon Nanotubes: A Synergetic Coaxial Nanocable Structure for Enhanced Electrocatalytic Water Oxidation.
    Qiu C; Jiang J; Ai L
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):945-51. PubMed ID: 26671308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NanoCOT: Low-Cost Nanostructured Electrode Containing Carbon, Oxygen, and Titanium for Efficient Oxygen Evolution Reaction.
    Shan Z; Archana PS; Shen G; Gupta A; Bakker MG; Pan S
    J Am Chem Soc; 2015 Sep; 137(37):11996-2005. PubMed ID: 26340536
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrophysical Properties and Structure of Natural Disordered
    Golubev YA; Antonets IV
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364573
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organobentonite Binder for Binding Sand Grains in Foundry Moulding Sands.
    Grabowska B; Cukrowicz S; Bobrowski A; Drożyński D; Żymankowska-Kumon S; Kaczmarska K; Tyliszczak B; Pribulová A
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of microstructure and conductivity of two-phase materials by the scanning spreading resistance microscopy (the case of shungite).
    Antonets IV; Golubev YA; Shcheglov VI
    Ultramicroscopy; 2021 Mar; 222():113212. PubMed ID: 33485061
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of hydrogen-substituted graphdiynes via dehalogenative homocoupling reactions.
    Wu J; Liang J; Zhang Y; Zhao X; Yuan C
    Chem Commun (Camb); 2021 May; 57(41):5036-5039. PubMed ID: 33881054
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crop Enhancement of Cucumber Plants under Heat Stress by Shungite Carbon.
    Kim TY; Ku H; Lee SY
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32659984
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancement of Drought Tolerance in Cucumber Plants by Natural Carbon Materials.
    Kim TY; Lee SH; Ku H; Lee SY
    Plants (Basel); 2019 Oct; 8(11):. PubMed ID: 31652995
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shungite Carbon as Unexpected Natural Source of Few-Layer Graphene Platelets in a Low Oxidation State.
    Tamburri E; Carcione R; Politi S; Angjellari M; Lazzarini L; Vanzetti LE; Macis S; Pepponi G; Terranova ML
    Inorg Chem; 2018 Jul; 57(14):8487-8498. PubMed ID: 29969022
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Neoteric View of
    Sheka EF
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242064
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergetic Metals on Carbocatalyst Shungite.
    Gusmão R; Sofer Z; Bouša D; Pumera M
    Chemistry; 2017 Dec; 23(72):18232-18238. PubMed ID: 28913844
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shungite (Mineralized Carbon) as a Promising Electrode Material for Electroanalysis.
    Sýs M; Bártová M; Bartoš M; Švancara I; Mikysek T
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.