BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28913873)

  • 1. Improvement of Decellularization Efficiency of Porcine Aorta Using Dimethyl Sulfoxide as a Penetration Enhancer.
    Guler S; Aydin HM; Lü LX; Yang Y
    Artif Organs; 2018 Feb; 42(2):219-230. PubMed ID: 28913873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ethanol washing on porcine pulmonary artery wall decellularization using sodium dodecyl sulfate.
    Kim H; Choi KH; Sung SC; Kim YS
    Artif Organs; 2022 Jul; 46(7):1281-1293. PubMed ID: 35107179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparison of aortic extracellular matrix scaffold by different protocols for decellularization].
    Pu L; Wu J; Meng M; Ni H; Ye F; Li Y; JIang L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Nov; 28(11):1413-21. PubMed ID: 25639061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion.
    Willemse J; Verstegen MMA; Vermeulen A; Schurink IJ; Roest HP; van der Laan LJW; de Jonge J
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110200. PubMed ID: 31923991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decellularization of kidney tissue: comparison of sodium lauryl ether sulfate and sodium dodecyl sulfate for allotransplantation in rat.
    Keshvari MA; Afshar A; Daneshi S; Khoradmehr A; Baghban M; Muhaddesi M; Behrouzi P; Miri MR; Azari H; Nabipour I; Shirazi R; Mahmudpour M; Tamadon A
    Cell Tissue Res; 2021 Nov; 386(2):365-378. PubMed ID: 34424397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale.
    Gilpin SE; Guyette JP; Gonzalez G; Ren X; Asara JM; Mathisen DJ; Vacanti JP; Ott HC
    J Heart Lung Transplant; 2014 Mar; 33(3):298-308. PubMed ID: 24365767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts.
    Wang Y; Bao J; Wu Q; Zhou Y; Li Y; Wu X; Shi Y; Li L; Bu H
    Xenotransplantation; 2015; 22(1):48-61. PubMed ID: 25291435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decellularization of porcine carotid arteries using low-concentration sodium dodecyl sulfate.
    Cheng J; Li J; Cai Z; Xing Y; Wang C; Guo L; Gu Y
    Int J Artif Organs; 2021 Jul; 44(7):497-508. PubMed ID: 33222583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Successful decellularization of thick-walled tissue: Highlighting pitfalls and the need for a multifactorial approach.
    Koenig F; Kilzer M; Hagl C; Thierfelder N
    Int J Artif Organs; 2019 Jan; 42(1):17-24. PubMed ID: 30442045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical evaluation of decellularized porcine thoracic aorta.
    Zou Y; Zhang Y
    J Surg Res; 2012 Jun; 175(2):359-68. PubMed ID: 21571306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative assessment of the efficiency of various decellularization agents for bone tissue engineering.
    Emami A; Talaei-Khozani T; Vojdani Z; Zarei Fard N
    J Biomed Mater Res B Appl Biomater; 2021 Jan; 109(1):19-32. PubMed ID: 32627321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of decellularization methods on extracellular matrix derived hydrogels.
    Fernández-Pérez J; Ahearne M
    Sci Rep; 2019 Oct; 9(1):14933. PubMed ID: 31624357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide.
    Hwang J; San BH; Turner NJ; White LJ; Faulk DM; Badylak SF; Li Y; Yu SM
    Acta Biomater; 2017 Apr; 53():268-278. PubMed ID: 28161576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold.
    Xu H; Xu B; Yang Q; Li X; Ma X; Xia Q; Zhang Y; Zhang C; Wu Y; Zhang Y
    PLoS One; 2014; 9(1):e86723. PubMed ID: 24475172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of freeze-thaw with detergents: A promising approach to the decellularization of porcine carotid arteries.
    Cheng J; Wang C; Gu Y
    Biomed Mater Eng; 2019; 30(2):191-205. PubMed ID: 30741667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triton X-100 combines with chymotrypsin: A more promising protocol to prepare decellularized porcine carotid arteries.
    Wang F; Zhang J; Wang R; Gu Y; Li J; Wang C
    Biomed Mater Eng; 2017; 28(5):531-543. PubMed ID: 28854493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of decellularized aortic scaffold for regenerative medicine using Sapindus mukorossi fruit pericarp extract.
    Goyal RP; Khangembam SD; Gangwar AK; Verma MK; Kumar N; Ahmed P; Yadav VK; Singh Y; Verma RK
    Micron; 2021 Mar; 142():102997. PubMed ID: 33388519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and mechanical characterization of decellularized scaffolds for an active aortic graft.
    Giovanniello F; Asgari M; Breslavsky ID; Franchini G; Holzapfel GA; Tabrizian M; Amabili M
    Acta Biomater; 2023 Apr; 160():59-72. PubMed ID: 36792047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decellularization of porcine whole lung to obtain a clinical-scale bioengineered scaffold.
    Li Y; Wu Q; Li L; Chen F; Bao J; Li W
    J Biomed Mater Res A; 2021 Sep; 109(9):1623-1632. PubMed ID: 33682365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An innovative method to obtain porous porcine aorta scaffolds for tissue engineering.
    Liu X; Cai Y; Xia C; Wu H; Li Q; Xu Z; Lu F
    Artif Organs; 2019 Dec; 43(12):1162-1169. PubMed ID: 31211855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.