These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 28914235)

  • 1. Jump stabilization and landing control by wing-spreading of a locust-inspired jumper.
    Beck A; Zaitsev V; Hanan UB; Kosa G; Ayali A; Weiss A
    Bioinspir Biomim; 2017 Oct; 12(6):066006. PubMed ID: 28914235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance analysis of jump-gliding locomotion for miniature robotics.
    Vidyasagar A; Zufferey JC; Floreano D; Kovač M
    Bioinspir Biomim; 2015 Mar; 10(2):025006. PubMed ID: 25811417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A locust-inspired miniature jumping robot.
    Zaitsev V; Gvirsman O; Ben Hanan U; Weiss A; Ayali A; Kosa G
    Bioinspir Biomim; 2015 Nov; 10(6):066012. PubMed ID: 26602094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot.
    Truong NT; Phan HV; Park HC
    Bioinspir Biomim; 2019 Mar; 14(3):036010. PubMed ID: 30658344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Inspired Research on the Flying-Jumping Locomotion of Locusts Using Robot Counterpart.
    Wei D; Gao T; Li Z; Mo X; Zheng S; Zhou C
    Front Neurorobot; 2019; 13():87. PubMed ID: 31708764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and experiments of a bio-inspired robot with multi-mode in aerial and terrestrial locomotion.
    Shin WD; Park J; Park HW
    Bioinspir Biomim; 2019 Jul; 14(5):056009. PubMed ID: 31212268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A minimal longitudinal dynamic model of a tailless flapping wing robot for control design.
    Kajak KM; Karásek M; Chu QP; de Croon GCHE
    Bioinspir Biomim; 2019 Jun; 14(4):046008. PubMed ID: 31039555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bioinspired multi-modal flying and walking robot.
    Daler L; Mintchev S; Stefanini C; Floreano D
    Bioinspir Biomim; 2015 Jan; 10(1):016005. PubMed ID: 25599118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired flapping wing robots with foldable or deformable wings: a review.
    Zhang J; Zhao N; Qu F
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36317380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whiteflies stabilize their take-off with closed wings.
    Ribak G; Dafni E; Gerling D
    J Exp Biol; 2016 Jun; 219(Pt 11):1639-48. PubMed ID: 27045098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns.
    Karásek M; Muijres FT; De Wagter C; Remes BDW; de Croon GCHE
    Science; 2018 Sep; 361(6407):1089-1094. PubMed ID: 30213907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of insect wing fracture behaviour.
    Rajabi H; Darvizeh A; Shafiei A; Taylor D; Dirks JH
    J Biomech; 2015 Jan; 48(1):89-94. PubMed ID: 25468669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow visualization and force measurement of the clapping effect in bio-inspired flying robots.
    Balta M; Deb D; Taha HE
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34584023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding in and out: passive morphing in flapping wings.
    Stowers AK; Lentink D
    Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design principles for efficient, repeated jumpgliding.
    Desbiens AL; Pope MT; Christensen DL; Hawkes EW; Cutkosky MR
    Bioinspir Biomim; 2014 Jun; 9(2):025009. PubMed ID: 24851908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure.
    Herbert RC; Young PG; Smith CW; Wootton RJ; Evans KE
    J Exp Biol; 2000 Oct; 203(Pt 19):2945-55. PubMed ID: 10976031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological intelligence counters foot slipping in the desert locust and dynamic robots.
    Woodward MA; Sitti M
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):E8358-E8367. PubMed ID: 30135101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli.
    Fuller SB; Karpelson M; Censi A; Ma KY; Wood RJ
    J R Soc Interface; 2014 Aug; 11(97):20140281. PubMed ID: 24942846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.