These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28914310)

  • 1. Plasmonic enhancement of SERS measured on molecules in carbon nanotubes.
    Mueller NS; Heeg S; Kusch P; Gaufrès E; Tang NY; Hübner U; Martel R; Vijayaraghavan A; Reich S
    Faraday Discuss; 2017 Dec; 205():85-103. PubMed ID: 28914310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant, Plasmonic Raman Enhancement of α-6T Molecules Encapsulated in Carbon Nanotubes.
    Wasserroth S; Heeg S; Mueller NS; Kusch P; Hübner U; Gaufrès E; Tang NY; Martel R; Vijayaraghavan A; Reich S
    J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(16):10578-10585. PubMed ID: 32064011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS).
    Kim J; Jang Y; Kim NJ; Kim H; Yi GC; Shin Y; Kim MH; Yoon S
    Front Chem; 2019; 7():582. PubMed ID: 31482089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance.
    Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK
    Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman scattering on single-wall carbon nanotubes.
    Kneipp K; Kneipp H; Dresselhaus MS; Lefrant S
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2361-73. PubMed ID: 15482983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch.
    Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.
    Sinha SS; Jones S; Pramanik A; Ray PC
    Acc Chem Res; 2016 Dec; 49(12):2725-2735. PubMed ID: 27993003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films.
    Tang L; Liu Y; Liu G; Chen Q; Li Y; Shi L; Liu Z; Liu X
    Nanoscale Res Lett; 2019 Mar; 14(1):94. PubMed ID: 30868395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SERS as a Probe of Surface Chemistry Enabled by Surface-Accessible Plasmonic Nanomaterials.
    Xu Y; Zhang Y; Li C; Ye Z; Bell SEJ
    Acc Chem Res; 2023 Aug; 56(15):2072-2083. PubMed ID: 37436068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Nanostructures-Decorated ZIF-8-Derived Nanoporous Carbon for Surface-Enhanced Raman Scattering.
    Liao GY; Lien MC; Tadepalli S; Liu KK
    ACS Omega; 2022 Oct; 7(41):36427-36433. PubMed ID: 36278097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation.
    Hu YS; Jeon J; Seok TJ; Lee S; Hafner JH; Drezek RA; Choo H
    ACS Nano; 2010 Oct; 4(10):5721-30. PubMed ID: 20836500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
    Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J
    Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering.
    Esteban R; Baumberg JJ; Aizpurua J
    Acc Chem Res; 2022 Jul; 55(14):1889-1899. PubMed ID: 35776555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordered zirconium dioxide nanotubes covered with an evaporated gold layer as reversible, chemically inert and very efficient substrates for surface-enhanced Raman scattering (SERS) measurement.
    Krajczewski J; Turczyniak-Surdacka S; Dziubałtowska M; Ambroziak R; Kudelski A
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121183. PubMed ID: 35344854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap.
    Chen BQ; Zhang C; Li J; Li ZY; Xia Y
    Nanoscale; 2016 Aug; 8(34):15730-6. PubMed ID: 27526632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures.
    Liu H; Zhang X; Zhai T; Sander T; Chen L; Klar PJ
    Nanoscale; 2014 May; 6(10):5099-105. PubMed ID: 24728009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.