These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28914409)

  • 1. Evaluation of contactless human-machine interface for robotic surgical training.
    Despinoy F; Zemiti N; Forestier G; Sánchez A; Jannin P; Poignet P
    Int J Comput Assist Radiol Surg; 2018 Jan; 13(1):13-24. PubMed ID: 28914409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised Trajectory Segmentation for Surgical Gesture Recognition in Robotic Training.
    Despinoy F; Bouget D; Forestier G; Penet C; Zemiti N; Poignet P; Jannin P
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1280-91. PubMed ID: 26513773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative analysis and guide to virtual reality robotic surgical simulators.
    Julian D; Tanaka A; Mattingly P; Truong M; Perez M; Smith R
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29125206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.
    Dubin AK; Smith R; Julian D; Tanaka A; Mattingly P
    J Minim Invasive Gynecol; 2017; 24(7):1184-1189. PubMed ID: 28757439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual Reality Simulator Systems in Robotic Surgical Training.
    Mangano A; Gheza F; Giulianotti PC
    Surg Technol Int; 2018 Jun; 32():19-23. PubMed ID: 29689588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of gesture recognition for contactless interface using a personalized classifier in the operating room.
    Cho Y; Lee A; Park J; Ko B; Kim N
    Comput Methods Programs Biomed; 2018 Jul; 161():39-44. PubMed ID: 29852966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automatic skill evaluation framework for robotic surgery training.
    Peng W; Xing Y; Liu R; Li J; Zhang Z
    Int J Med Robot; 2019 Feb; 15(1):e1964. PubMed ID: 30281892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current status of robotic simulators in acquisition of robotic surgical skills.
    Kumar A; Smith R; Patel VR
    Curr Opin Urol; 2015 Mar; 25(2):168-74. PubMed ID: 25574791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanics-machine learning system for surgical gesture analysis and development of technologies for minimal access surgery.
    Cavallo F; Sinigaglia S; Megali G; Pietrabissa A; Dario P; Mosca F; Cuschieri A
    Surg Innov; 2014 Oct; 21(5):504-12. PubMed ID: 24297781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current state of virtual reality simulation in robotic surgery training: a review.
    Bric JD; Lumbard DC; Frelich MJ; Gould JC
    Surg Endosc; 2016 Jun; 30(6):2169-78. PubMed ID: 26304107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BCI-based user training in surgical robotics.
    Olivieri E; Barresi G; Mattos LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4918-21. PubMed ID: 26737395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of three different techniques for camera and motion control of a teleoperated robot.
    Doisy G; Ronen A; Edan Y
    Appl Ergon; 2017 Jan; 58():527-534. PubMed ID: 27181096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of stereo endoscope system with its innovative master interface for continuous surgical operation.
    Kim M; Lee C; Hong N; Kim YJ; Kim S
    Biomed Eng Online; 2017 Jun; 16(1):81. PubMed ID: 28646865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation-based training and assessment in urological surgery.
    Aydin A; Raison N; Khan MS; Dasgupta P; Ahmed K
    Nat Rev Urol; 2016 Sep; 13(9):503-19. PubMed ID: 27549358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urology residents experience comparable workload profiles when performing live porcine nephrectomies and robotic surgery virtual reality training modules.
    Mouraviev V; Klein M; Schommer E; Thiel DD; Samavedi S; Kumar A; Leveillee RJ; Thomas R; Pow-Sang JM; Su LM; Mui E; Smith R; Patel V
    J Robot Surg; 2016 Mar; 10(1):49-56. PubMed ID: 26753619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.
    Lahanas V; Loukas C; Georgiou K; Lababidi H; Al-Jaroudi D
    Surg Endosc; 2017 Dec; 31(12):5012-5023. PubMed ID: 28466361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct manipulation of tool-like masters for controlling a master-slave surgical robotic system.
    Zhang L; Zhou N; Wang S
    Int J Med Robot; 2014 Dec; 10(4):427-37. PubMed ID: 24127347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Three-Limb Teleoperated Robotic System with Foot Control for Flexible Endoscopic Surgery.
    Huang Y; Lai W; Cao L; Liu J; Li X; Burdet E; Phee SJ
    Ann Biomed Eng; 2021 Sep; 49(9):2282-2296. PubMed ID: 33834351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer.
    Brown JD; O Brien CE; Leung SC; Dumon KR; Lee DI; Kuchenbecker KJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2263-2275. PubMed ID: 28113295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.