BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28914478)

  • 1. Mechanistic Insights into Cyclic Peptide Generation by DnaE Split-Inteins through Quantitative and Structural Investigation.
    Kick LM; Harteis S; Koch MF; Schneider S
    Chembiochem; 2017 Nov; 18(22):2242-2246. PubMed ID: 28914478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved residues that modulate protein trans-splicing of Npu DnaE split intein.
    Wu Q; Gao Z; Wei Y; Ma G; Zheng Y; Dong Y; Liu Y
    Biochem J; 2014 Jul; 461(2):247-55. PubMed ID: 24758175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins.
    Aranko AS; Züger S; Buchinger E; Iwaï H
    PLoS One; 2009; 4(4):e5185. PubMed ID: 19365564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR resonance assignment of DnaE intein from Nostoc punctiforme.
    Heinämäki K; Oeemig JS; Pääkkönen K; Djupsjöbacka J; Iwaï H
    Biomol NMR Assign; 2009 Jun; 3(1):41-3. PubMed ID: 19636943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme.
    Iwai H; Züger S; Jin J; Tam PH
    FEBS Lett; 2006 Mar; 580(7):1853-8. PubMed ID: 16516207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification.
    Oeemig JS; Aranko AS; Djupsjöbacka J; Heinämäki K; Iwaï H
    FEBS Lett; 2009 May; 583(9):1451-6. PubMed ID: 19344715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traceless splicing enabled by substrate-induced activation of the Nostoc punctiforme Npu DnaE intein after mutation of a catalytic cysteine to serine.
    Cheriyan M; Chan SH; Perler F
    J Mol Biol; 2014 Dec; 426(24):4018-4029. PubMed ID: 25451033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing.
    Sun P; Ye S; Ferrandon S; Evans TC; Xu MQ; Rao Z
    J Mol Biol; 2005 Nov; 353(5):1093-105. PubMed ID: 16219320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traceless Production of Cyclic Peptide Libraries in E. coli.
    Townend JE; Tavassoli A
    ACS Chem Biol; 2016 Jun; 11(6):1624-30. PubMed ID: 27027149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction.
    Zettler J; Schütz V; Mootz HD
    FEBS Lett; 2009 Mar; 583(5):909-14. PubMed ID: 19302791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of a naturally occurring trans-splicing intein from Synechococcus elongatus in a mammalian cell system.
    Chen L; Zhang Y; Li G; Huang H; Zhou N
    Anal Biochem; 2010 Dec; 407(2):180-7. PubMed ID: 20727340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of Protease and Luciferase Using Engineered Nostoc punctiforme PCC73102 DnaE Intein with Altered Split Position.
    Kawase M; Fujioka M; Takahashi T
    Chembiochem; 2021 Feb; 22(3):577-584. PubMed ID: 32969142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The NMR structure of the engineered halophilic DnaE intein for segmental isotopic labeling using conditional protein splicing.
    Heikkinen HA; Aranko AS; Iwaï H
    J Magn Reson; 2022 May; 338():107195. PubMed ID: 35398651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A promiscuous split intein with expanded protein engineering applications.
    Stevens AJ; Sekar G; Shah NH; Mostafavi AZ; Cowburn D; Muir TW
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8538-8543. PubMed ID: 28739907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Faster protein splicing with the Nostoc punctiforme DnaE intein using non-native extein residues.
    Cheriyan M; Pedamallu CS; Tori K; Perler F
    J Biol Chem; 2013 Mar; 288(9):6202-11. PubMed ID: 23306197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutual synergistic protein folding in split intein.
    Zheng Y; Wu Q; Wang C; Xu MQ; Liu Y
    Biosci Rep; 2012 Oct; 32(5):433-42. PubMed ID: 22681309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Split-Intein Triggered Protein Hydrogels.
    Ramirez MA; Chen Z
    Methods Mol Biol; 2017; 1495():161-171. PubMed ID: 27714616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803.
    Evans TC; Martin D; Kolly R; Panne D; Sun L; Ghosh I; Chen L; Benner J; Liu XQ; Xu MQ
    J Biol Chem; 2000 Mar; 275(13):9091-4. PubMed ID: 10734038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a tandem protein trans-splicing system based on native and engineered split inteins.
    Shi J; Muir TW
    J Am Chem Soc; 2005 May; 127(17):6198-206. PubMed ID: 15853324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a Split Intein with Exceptional Protein Splicing Activity.
    Stevens AJ; Brown ZZ; Shah NH; Sekar G; Cowburn D; Muir TW
    J Am Chem Soc; 2016 Feb; 138(7):2162-5. PubMed ID: 26854538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.