These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28914480)

  • 1. Wireless Electrochemical Actuation of Conducting Polymers.
    Gupta B; Goudeau B; Kuhn A
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14183-14186. PubMed ID: 28914480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wireless Coupling of Conducting Polymer Actuators with Light Emission.
    Gupta B; Afonso MC; Zhang L; Ayela C; Garrigue P; Goudeau B; Kuhn A
    Chemphyschem; 2019 Apr; 20(7):941-945. PubMed ID: 30840350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless Electromechanical Readout of Chemical Information.
    Zhang L; Gupta B; Goudeau B; Mano N; Kuhn A
    J Am Chem Soc; 2018 Nov; 140(45):15501-15506. PubMed ID: 30347149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing tubular conducting polymer actuators for wireless electropumping.
    Gupta B; Zhang L; Melvin AA; Goudeau B; Bouffier L; Kuhn A
    Chem Sci; 2020 Dec; 12(6):2071-2077. PubMed ID: 34163970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute Chiral Recognition with Hybrid Wireless Electrochemical Actuators.
    Arnaboldi S; Gupta B; Benincori T; Bonetti G; Cirilli R; Kuhn A
    Anal Chem; 2020 Jul; 92(14):10042-10047. PubMed ID: 32551513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless electrochemical actuation of soft materials towards chiral stimuli.
    Arnaboldi S
    Chem Commun (Camb); 2023 Feb; 59(15):2072-2080. PubMed ID: 36748650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric Bilayer Muscles: Cooperative Actuation, Dynamic Hysteresis, and Creeping in NaPF6 Aqueous Solutions.
    Fuchiwaki M; Martinez JG; Fernandez Otero T
    ChemistryOpen; 2016 Aug; 5(4):369-74. PubMed ID: 27547647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless Electrochemical Gel Actuators.
    Imato K; Hino T; Kaneda N; Imae I; Shida N; Inagi S; Ooyama Y
    Small; 2024 Mar; 20(9):e2305067. PubMed ID: 37858925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bipolar Electrochemical Stimulation Using Conducting Polymers for Wireless Electroceuticals and Future Directions.
    Qin C; Yue Z; Wallace GG; Chen J
    ACS Appl Bio Mater; 2022 Nov; 5(11):5041-5056. PubMed ID: 36260917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical post-functionalization of conducting polymers.
    Inagi S; Fuchigami T
    Macromol Rapid Commun; 2014 May; 35(9):854-67. PubMed ID: 24590504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of conducting polymers to a biorobotic fin propulsor.
    Tangorra J; Anquetil P; Fofonoff T; Chen A; Del Zio M; Hunter I
    Bioinspir Biomim; 2007 Jun; 2(2):S6-17. PubMed ID: 17671330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradient doping of conducting polymer films by means of bipolar electrochemistry.
    Ishiguro Y; Inagi S; Fuchigami T
    Langmuir; 2011 Jun; 27(11):7158-62. PubMed ID: 21568350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote Actuation of a Light-Emitting Device Based on Magnetic Stirring and Wireless Electrochemistry.
    Dauphin AL; Arbault S; Kuhn A; Sojic N; Bouffier L
    Chemphyschem; 2020 Apr; 21(7):600-604. PubMed ID: 32031308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data on enhanced wireless cell stimulation using soft and improved bipolar electroactive conducting polymer templates.
    Qin C; Yue Z; Huang XF; Forster RJ; Wallace GG; Chen J
    Data Brief; 2022 Aug; 43():108393. PubMed ID: 35781980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data on the bipolar electroactive conducting polymers for wireless cell stimulation.
    Qin C; Yue Z; Chao Y; Forster RJ; Maolmhuaidh FÓ; Huang XF; Beirne S; Wallace GG; Chen J
    Data Brief; 2020 Dec; 33():106406. PubMed ID: 33088881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral platinum-polypyrrole hybrid films as efficient enantioselective actuators.
    Assavapanumat S; Gupta B; Salinas G; Goudeau B; Wattanakit C; Kuhn A
    Chem Commun (Camb); 2019 Sep; 55(73):10956-10959. PubMed ID: 31451809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless Imaging of Transient Redox Activity Based on Bipolar Light-Emitting Electrode Arrays.
    Salinas G; Beladi-Mousavi SM; Gerasimova L; Bouffier L; Kuhn A
    Anal Chem; 2022 Oct; 94(41):14317-14321. PubMed ID: 36190826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers.
    Arnaboldi S; Salinas G; Bichon S; Gounel S; Mano N; Kuhn A
    Nat Commun; 2023 Oct; 14(1):6390. PubMed ID: 37828004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the electrolyte concentration and substrate on conducting polymer actuators.
    Martinez JG; Otero TF; Jager EW
    Langmuir; 2014 Apr; 30(13):3894-904. PubMed ID: 24605916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic dual sensing-actuators based on conducting polymers. Galvanostatic theoretical model for actuators sensing temperature.
    Otero TF; Sanchez JJ; Martinez JG
    J Phys Chem B; 2012 May; 116(17):5279-90. PubMed ID: 22455612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.