BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28914946)

  • 21. In-situ X-ray diffraction activation study on an Fe/TiO2 pre-catalyst.
    Rayner MK; Billing DG; Coville NJ
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2014 Jun; 70(Pt 3):498-509. PubMed ID: 24892597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoinduced Deposition of Platinum from (Bu
    Vasilchenko D; Topchiyan P; Tsygankova A; Asanova T; Kolesov B; Bukhtiyarov A; Kurenkova A; Kozlova E
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48631-48641. PubMed ID: 33064000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersion behaviors of molybdena on titania (rutile and/or anatase).
    Zhu H; Shen M; Wu Y; Li X; Hong J; Liu B; Wu X; Dong L; Chen Y
    J Phys Chem B; 2005 Jun; 109(23):11720-6. PubMed ID: 16852439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dispersion and stability mechanism of Pt nanoparticles on transition-metal oxides.
    Jeong ES; Hwang IH; Han SW
    Sci Rep; 2022 Aug; 12(1):13652. PubMed ID: 35953693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rutile TiO2 nanowires on anatase TiO2 nanofibers: a branched heterostructured photocatalysts via interface-assisted fabrication approach.
    Wang C; Zhang X; Shao C; Zhang Y; Yang J; Sun P; Liu X; Liu H; Liu Y; Xie T; Wang D
    J Colloid Interface Sci; 2011 Nov; 363(1):157-64. PubMed ID: 21820128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-atom Ir
    Wang Y; Xu W; Chen X; Li C; Xie J; Yang Y; Zhu T; Zhang C
    J Hazard Mater; 2022 Jun; 432():128670. PubMed ID: 35290894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anatase TiO
    Zhang X; Zuo G; Lu X; Tang C; Cao S; Yu M
    J Colloid Interface Sci; 2017 Mar; 490():774-782. PubMed ID: 27997847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO
    DeRita L; Dai S; Lopez-Zepeda K; Pham N; Graham GW; Pan X; Christopher P
    J Am Chem Soc; 2017 Oct; 139(40):14150-14165. PubMed ID: 28902501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO₂ nanoparticles in vitro.
    He X; Sanders S; Aker WG; Lin Y; Douglas J; Hwang HM
    J Environ Sci (China); 2016 Apr; 42():50-60. PubMed ID: 27090694
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boosting Photocatalytic Performance of Inactive Rutile TiO
    Dhandole LK; Mahadik MA; Kim SG; Chung HS; Seo YS; Cho M; Ryu JH; Jang JS
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23602-23613. PubMed ID: 28665115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface Modification of Perfect and Hydroxylated TiO
    Fronzi M; Nolan M
    ACS Omega; 2017 Oct; 2(10):6795-6808. PubMed ID: 31457267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials.
    Fronzi M; Iwaszuk A; Lucid A; Nolan M
    J Phys Condens Matter; 2016 Feb; 28(7):074006. PubMed ID: 26808905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk.
    Zhang J; Li M; Feng Z; Chen J; Li C
    J Phys Chem B; 2006 Jan; 110(2):927-35. PubMed ID: 16471625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Difference in TiO₂ photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water.
    Kakuma Y; Nosaka AY; Nosaka Y
    Phys Chem Chem Phys; 2015 Jul; 17(28):18691-8. PubMed ID: 26120611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical Nanotubular Anatase/Rutile/TiO
    An X; Hu C; Liu H; Qu J
    Langmuir; 2018 Feb; 34(5):1883-1889. PubMed ID: 29309163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphological and structural behavior of TiO2 nanoparticles in the presence of WO3: crystallization of the oxide composite system.
    Kubacka A; Iglesias-Juez A; di Michiel M; Becerro AI; Fernández-García M
    Phys Chem Chem Phys; 2014 Sep; 16(36):19540-9. PubMed ID: 25105950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Ultrasensitive Room-Temperature H
    Wu X; Zhang Y; Zhang M; Liang J; Bao Y; Xia X; Homewood K; Lourenco M; Gao Y
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Role of Cerium Valence in the Conversion Temperature of H
    Umek P; Dürrschnabel M; Molina-Luna L; Škapin S; Korošec RC; Bittencourt C
    Molecules; 2023 Aug; 28(15):. PubMed ID: 37570808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature.
    Wang WK; Chen JJ; Zhang X; Huang YX; Li WW; Yu HQ
    Sci Rep; 2016 Feb; 6():20491. PubMed ID: 26864501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of Calcination Temperature on Crystal Structure of Pt-TiO2 Nanofibers.
    Lee DY; Kim JT; Song YS; Kim BY
    J Nanosci Nanotechnol; 2015 Jan; 15(1):566-9. PubMed ID: 26328403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.