BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28914992)

  • 1. An effective thermal therapy against cancer using an E-jet 3D-printing method to prepare implantable magnetocaloric mats.
    Yang Y; Tong C; Zhong J; Huang R; Tan W; Tan Z
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1827-1841. PubMed ID: 28914992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia.
    Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O
    ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles.
    Kalber TL; Ordidge KL; Southern P; Loebinger MR; Kyrtatos PG; Pankhurst QA; Lythgoe MF; Janes SM
    Int J Nanomedicine; 2016; 11():1973-83. PubMed ID: 27274229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia.
    Demessie AA; Park Y; Singh P; Moses AS; Korzun T; Sabei FY; Albarqi HA; Campos L; Wyatt CR; Farsad K; Dhagat P; Sun C; Taratula OR; Taratula O
    Small Methods; 2022 Dec; 6(12):e2200916. PubMed ID: 36319445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe
    Zhou P; Zhao H; Wang Q; Zhou Z; Wang J; Deng G; Wang X; Liu Q; Yang H; Yang S
    Adv Healthc Mater; 2018 May; 7(9):e1701201. PubMed ID: 29356419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia.
    Ding Q; Liu D; Guo D; Yang F; Pang X; Che R; Zhou N; Xie J; Sun J; Huang Z; Gu N
    Biomaterials; 2017 Apr; 124():35-46. PubMed ID: 28187393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.
    Sanz B; Calatayud MP; Torres TE; Fanarraga ML; Ibarra MR; Goya GF
    Biomaterials; 2017 Jan; 114():62-70. PubMed ID: 27846403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TiO
    Kanetaka H; Liu G; Li Z; Miyazaki T; Furuya M; Kudo TA; Kawashita M
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2308-2314. PubMed ID: 27495744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MOF-derived novel porous Fe
    Xiang Z; Qi Y; Lu Y; Hu Z; Wang X; Jia W; Hu J; Ji J; Lu W
    J Mater Chem B; 2020 Sep; 8(37):8671-8683. PubMed ID: 32856668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual pH and temperature stimuli-responsive magnetic nanohydrogels for thermo-chemotherapy.
    Jaiswal MK; Pradhan A; Banerjee R; Bahadur D
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4082-9. PubMed ID: 24738355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of smart antibacterial PCL-xFe
    Pai B G; Kulkarni AV; Jain S
    J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):795-804. PubMed ID: 26762566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.
    T S A; Lu YJ; Chen JP
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of magnetic alginate-based electrospun matrices crosslinked with different methods for potential hyperthermia treatment.
    Chen YH; Cheng CH; Chang WJ; Lin YC; Lin FH; Lin JC
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():338-49. PubMed ID: 26952432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex of TNF-α and Modified Fe
    Teo P; Wang X; Chen B; Zhang H; Yang X; Huang Y; Tang J
    Cancer Biother Radiopharm; 2017 Dec; 32(10):379-386. PubMed ID: 29265918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model.
    Matsumi Y; Kagawa T; Yano S; Tazawa H; Shigeyasu K; Takeda S; Ohara T; Aono H; Hoffman RM; Fujiwara T; Kishimoto H
    Cell Cycle; 2021 Jun; 20(12):1122-1133. PubMed ID: 34110969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression.
    Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ
    Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer.
    Stocke NA; Sethi P; Jyoti A; Chan R; Arnold SM; Hilt JZ; Upreti M
    Biomaterials; 2017 Mar; 120():115-125. PubMed ID: 28056401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic nanofibers based bandage for skin cancer treatment: a non-invasive hyperthermia therapy.
    Suneet K; De T; Rangarajan A; Jain S
    Cancer Rep (Hoboken); 2020 Dec; 3(6):e1281. PubMed ID: 32881425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.