These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 28914992)
1. An effective thermal therapy against cancer using an E-jet 3D-printing method to prepare implantable magnetocaloric mats. Yang Y; Tong C; Zhong J; Huang R; Tan W; Tan Z J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1827-1841. PubMed ID: 28914992 [TBL] [Abstract][Full Text] [Related]
2. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199 [TBL] [Abstract][Full Text] [Related]
3. Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Kalber TL; Ordidge KL; Southern P; Loebinger MR; Kyrtatos PG; Pankhurst QA; Lythgoe MF; Janes SM Int J Nanomedicine; 2016; 11():1973-83. PubMed ID: 27274229 [TBL] [Abstract][Full Text] [Related]
4. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia. Demessie AA; Park Y; Singh P; Moses AS; Korzun T; Sabei FY; Albarqi HA; Campos L; Wyatt CR; Farsad K; Dhagat P; Sun C; Taratula OR; Taratula O Small Methods; 2022 Dec; 6(12):e2200916. PubMed ID: 36319445 [TBL] [Abstract][Full Text] [Related]
5. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe Zhou P; Zhao H; Wang Q; Zhou Z; Wang J; Deng G; Wang X; Liu Q; Yang H; Yang S Adv Healthc Mater; 2018 May; 7(9):e1701201. PubMed ID: 29356419 [TBL] [Abstract][Full Text] [Related]
6. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Ding Q; Liu D; Guo D; Yang F; Pang X; Che R; Zhou N; Xie J; Sun J; Huang Z; Gu N Biomaterials; 2017 Apr; 124():35-46. PubMed ID: 28187393 [TBL] [Abstract][Full Text] [Related]
8. TiO Kanetaka H; Liu G; Li Z; Miyazaki T; Furuya M; Kudo TA; Kawashita M J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2308-2314. PubMed ID: 27495744 [TBL] [Abstract][Full Text] [Related]
9. MOF-derived novel porous Fe Xiang Z; Qi Y; Lu Y; Hu Z; Wang X; Jia W; Hu J; Ji J; Lu W J Mater Chem B; 2020 Sep; 8(37):8671-8683. PubMed ID: 32856668 [TBL] [Abstract][Full Text] [Related]
10. Dual pH and temperature stimuli-responsive magnetic nanohydrogels for thermo-chemotherapy. Jaiswal MK; Pradhan A; Banerjee R; Bahadur D J Nanosci Nanotechnol; 2014 Jun; 14(6):4082-9. PubMed ID: 24738355 [TBL] [Abstract][Full Text] [Related]
11. Study of smart antibacterial PCL-xFe Pai B G; Kulkarni AV; Jain S J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):795-804. PubMed ID: 26762566 [TBL] [Abstract][Full Text] [Related]
12. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy. T S A; Lu YJ; Chen JP Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876 [TBL] [Abstract][Full Text] [Related]
13. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization. Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392 [TBL] [Abstract][Full Text] [Related]
14. Cancer hyperthermia using magnetic nanoparticles. Kobayashi T Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094 [TBL] [Abstract][Full Text] [Related]
15. Studies of magnetic alginate-based electrospun matrices crosslinked with different methods for potential hyperthermia treatment. Chen YH; Cheng CH; Chang WJ; Lin YC; Lin FH; Lin JC Mater Sci Eng C Mater Biol Appl; 2016 May; 62():338-49. PubMed ID: 26952432 [TBL] [Abstract][Full Text] [Related]
16. Complex of TNF-α and Modified Fe Teo P; Wang X; Chen B; Zhang H; Yang X; Huang Y; Tang J Cancer Biother Radiopharm; 2017 Dec; 32(10):379-386. PubMed ID: 29265918 [TBL] [Abstract][Full Text] [Related]
17. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model. Matsumi Y; Kagawa T; Yano S; Tazawa H; Shigeyasu K; Takeda S; Ohara T; Aono H; Hoffman RM; Fujiwara T; Kishimoto H Cell Cycle; 2021 Jun; 20(12):1122-1133. PubMed ID: 34110969 [TBL] [Abstract][Full Text] [Related]
18. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332 [TBL] [Abstract][Full Text] [Related]
19. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer. Stocke NA; Sethi P; Jyoti A; Chan R; Arnold SM; Hilt JZ; Upreti M Biomaterials; 2017 Mar; 120():115-125. PubMed ID: 28056401 [TBL] [Abstract][Full Text] [Related]
20. Magnetic nanofibers based bandage for skin cancer treatment: a non-invasive hyperthermia therapy. Suneet K; De T; Rangarajan A; Jain S Cancer Rep (Hoboken); 2020 Dec; 3(6):e1281. PubMed ID: 32881425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]