These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28915017)

  • 21. One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals - a hydrothermal approach.
    Tiong VT; Bell J; Wang H
    Beilstein J Nanotechnol; 2014; 5():438-46. PubMed ID: 24778970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.
    Li J; Wang H; Wu L; Chen C; Zhou Z; Liu F; Sun Y; Han J; Zhang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10283-92. PubMed ID: 27058738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Annealing Induced Shape Transformation of CZTS Nanorods Based Thin Films.
    Rajesh G; Muthukumarasamy N; Velauthapillai D; Batabyal SK
    Langmuir; 2017 Jun; 33(24):6151-6158. PubMed ID: 28534636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-electroplated Kesterite Bifacial Thin-Film Solar Cells: A Study of Sulfurization Temperature.
    Ge J; Chu J; Yan Y; Jiang J; Yang P
    ACS Appl Mater Interfaces; 2015 May; 7(19):10414-28. PubMed ID: 25871647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical manipulation of magnetic ordering in Mn(1-x)Sn(x)Bi2Se4 solid-solutions.
    Ranmohotti KG; Djieutedjeu H; Poudeu PF
    J Am Chem Soc; 2012 Aug; 134(34):14033-42. PubMed ID: 22852825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology.
    Mitzi DB; Gunawan O; Todorov TK; Barkhouse DA
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110432. PubMed ID: 23816909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals.
    Zhou H; Song TB; Hsu WC; Luo S; Ye S; Duan HS; Hsu CJ; Yang W; Yang Y
    J Am Chem Soc; 2013 Oct; 135(43):15998-6001. PubMed ID: 24128165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the Reaction Pathway on the Defect Formation in a Cu
    Yoo H; Jang JS; Shin SW; Lee J; Kim J; Kim DM; Lee IJ; Lee BH; Park J; Kim JH
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13425-13433. PubMed ID: 33706505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of quaternary chalcogenide nanocrystals: stannite Cu(2)Zn(x)Sn(y)Se(1+x+2y).
    Shavel A; Arbiol J; Cabot A
    J Am Chem Soc; 2010 Apr; 132(13):4514-5. PubMed ID: 20232869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the phase formation kinetics of nano-crystalline kesterite deposited on mesoscopic scaffolds via in situ multi-wavelength Raman-monitored annealing.
    Wang Z; Elouatik S; Demopoulos GP
    Phys Chem Chem Phys; 2016 Oct; 18(42):29435-29446. PubMed ID: 27738685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation of antisite domain boundaries in Cu2ZnSnS4 by atomic-resolution transmission electron microscopy.
    Kattan NA; Griffiths IJ; Cherns D; Fermín DJ
    Nanoscale; 2016 Aug; 8(30):14369-73. PubMed ID: 27405278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercurial possibilities: determining site distributions in Cu
    Bhattacharya A; Mishra V; Tkachuk DG; Mar A; Michaelis VK
    Phys Chem Chem Phys; 2022 Oct; 24(39):24306-24316. PubMed ID: 36172896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding the origin of disorder in kesterite-type chalcogenides A
    Mangelis P; Aziz A; da Silva I; Grau-Crespo R; Vaqueiro P; Powell AV
    Phys Chem Chem Phys; 2019 Sep; 21(35):19311-19317. PubMed ID: 31451820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polarized Raman scattering study of kesterite type Cu2ZnSnS4 single crystals.
    Guc M; Levcenko S; Bodnar IV; Izquierdo-Roca V; Fontane X; Volkova LV; Arushanov E; Pérez-Rodríguez A
    Sci Rep; 2016 Jan; 6():19414. PubMed ID: 26776727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong quantum confinement effects in kesterite Cu2ZnSnS4 nanospheres for organic optoelectronic cells.
    Arul NS; Yun DY; Lee DU; Kim TW
    Nanoscale; 2013 Dec; 5(23):11940-3. PubMed ID: 24129972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is It Possible To Develop Complex S-Se Graded Band Gap Profiles in Kesterite-Based Solar Cells?
    Andrade-Arvizu J; Izquierdo-Roca V; Becerril-Romero I; Vidal-Fuentes P; Fonoll-Rubio R; Sánchez Y; Placidi M; Calvo-Barrio L; Vigil-Galán O; Saucedo E
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32945-32956. PubMed ID: 31426633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis, crystal and band structures, and optical properties of a new mixed-framework mercury selenide diselenite, (Hg3Se2)(Se2O5).
    Zou JP; Guo GC; Guo SP; Lu YB; Wu KJ; Wang MS; Huang JS
    Dalton Trans; 2007 Nov; (42):4854-8. PubMed ID: 17955137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetism of Kesterite Cu
    Lejda K; Drygaś M; Janik JF; Szczytko J; Twardowski A; Olejniczak Z
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics.
    Hong F; Lin W; Meng W; Yan Y
    Phys Chem Chem Phys; 2016 Feb; 18(6):4828-34. PubMed ID: 26804024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-Temperature Solution-Processed Kesterite Solar Cell Based on in Situ Deposition of Ultrathin Absorber Layer.
    Hou Y; Azimi H; Gasparini N; Salvador M; Chen W; Khanzada LS; Brandl M; Hock R; Brabec CJ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21100-6. PubMed ID: 26353923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.