These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28915056)

  • 1. Gigahertz Optomechanical Modulation by Split-Ring-Resonator Nanophotonic Meta-Atom Arrays.
    Imade Y; Ulbricht R; Tomoda M; Matsuda O; Seniutinas G; Juodkazis S; Wright OB
    Nano Lett; 2017 Nov; 17(11):6684-6689. PubMed ID: 28915056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gigahertz Nano-Optomechanical Resonances in a Dielectric SiC-Membrane Metasurface Array.
    Ajia IA; Ou JY; Dinsdale NJ; Singh HJ; Chen-Sverre T; Liu T; Zheludev NI; Muskens OL
    Nano Lett; 2021 Jun; 21(11):4563-4569. PubMed ID: 34015218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gigahertz optoacoustic vibration in Sub-5 nm tip-supported nano-optomechanical metasurface.
    Gao R; He Y; Zhang D; Sun G; He JX; Li JF; Li MD; Yang Z
    Nat Commun; 2023 Jan; 14(1):485. PubMed ID: 36717581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast acousto-plasmonic control and sensing in complex nanostructures.
    O'Brien K; Lanzillotti-Kimura ND; Rho J; Suchowski H; Yin X; Zhang X
    Nat Commun; 2014 Jun; 5():4042. PubMed ID: 24893773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear Chiral Meta-Mirrors: Enabling Technology for Ultrafast Switching of Light Polarization.
    Kang L; Wang CY; Guo X; Ni X; Liu Z; Werner DH
    Nano Lett; 2020 Mar; 20(3):2047-2055. PubMed ID: 32031817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications.
    Tang W; Wang L; Chen X; Liu C; Yu A; Lu W
    Nanoscale; 2016 Aug; 8(33):15196-204. PubMed ID: 27337105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance properties of thick plasmonic split ring resonators for sensing applications.
    Giorgis V; Zilio P; Ruffato G; Massari M; Zacco G; Romanato F
    Opt Express; 2014 Nov; 22(22):26476-86. PubMed ID: 25401799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical and Theoretical Study of Tunable Plasmonically Induced Transparency Effect Based on Bright-Dark Mode Coupling in Graphene Metasurface.
    Ma Q; Dai J; Luo A; Hong W
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Order Magnetic and Electric Resonant Modes of Split Ring Resonator Metasurface Arrays for Strong Enhancement of Mid-Infrared Photodetection.
    Tong J; Suo F; Tobing LYM; Yao N; Zhang D; Huang Z; Zhang DH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8835-8844. PubMed ID: 31933365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gigahertz All-Optical Modulation Using Reconfigurable Nanophotonic Metamolecules.
    Dong B; Chen X; Zhou F; Wang C; Zhang HF; Sun C
    Nano Lett; 2016 Dec; 16(12):7690-7695. PubMed ID: 27960459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gigahertz Optomechanical Photon-Phonon Transduction between Nanostructure Lines.
    Imade Y; Gusev VE; Matsuda O; Tomoda M; Otsuka PH; Wright OB
    Nano Lett; 2021 Jul; 21(14):6261-6267. PubMed ID: 34279964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach.
    Rockstuhl C; Zentgraf T; Pshenay-Severin E; Petschulat J; Chipouline A; Kuhl J; Pertsch T; Giessen H; Lederer F
    Opt Express; 2007 Jul; 15(14):8871-83. PubMed ID: 19547225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared plasmonic meta-modes via near-field coupling of metallic nanorods with split-ring resonators.
    Gutha RR; Sadeghi SM; Sharp C; Hatef A
    Nanotechnology; 2019 Sep; 30(39):395203. PubMed ID: 31242470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators.
    Thijssen R; Kippenberg TJ; Polman A; Verhagen E
    ACS Photonics; 2014 Nov; 1(11):1181-1188. PubMed ID: 25642442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From isolated metaatoms to photonic metamaterials: evolution of the plasmonic near-field.
    von Cube F; Irsen S; Diehl R; Niegemann J; Busch K; Linden S
    Nano Lett; 2013 Feb; 13(2):703-8. PubMed ID: 23339664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast vibrations of gold nanorings.
    Kelf TA; Tanaka Y; Matsuda O; Larsson EM; Sutherland DS; Wright OB
    Nano Lett; 2011 Sep; 11(9):3893-8. PubMed ID: 21861482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic Characteristics of Three Dimensional Split-Ring Resonator Arrays at Terahertz Frequencies.
    Wilbert DS; Hokmabadi MP; Kung P; Kim SM
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2289-93. PubMed ID: 26413654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical plasmonic resonances in split-ring resonator structures: an improved LC model.
    Corrigan TD; Kolb PW; Sushkov AB; Drew HD; Schmadel DC; Phaneuf RJ
    Opt Express; 2008 Nov; 16(24):19850-64. PubMed ID: 19030072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Near-Field SEIRA Enhancements in Plasmonic Resonators.
    Chae J; Lahiri B; Centrone A
    ACS Photonics; 2016 Jan; 3(1):87-95. PubMed ID: 27182532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active polarization-independent plasmon-induced transparency metasurface with suppressed magnetic attenuation.
    Wang J; Tan P; Li S; Wang G; Guo W; Zhou Z; Tian H
    Opt Express; 2021 May; 29(10):15541-15550. PubMed ID: 33985252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.