BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

873 related articles for article (PubMed ID: 28915493)

  • 1. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance in global waters using machine learning.
    Kolluru S; Tiwari SP
    Sci Total Environ; 2022 Oct; 844():157191. PubMed ID: 35810889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands.
    Gilerson AA; Gitelson AA; Zhou J; Gurlin D; Moses W; Ioannou I; Ahmed SA
    Opt Express; 2010 Nov; 18(23):24109-25. PubMed ID: 21164758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front.
    D'Sa EJ; Miller RL; Del Castillo C
    Appl Opt; 2006 Oct; 45(28):7410-28. PubMed ID: 16983431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A harmful algal bloom of Karenia brevis in the northeastern Gulf of Mexico as revealed by MODIS and VIIRS: a comparison.
    Hu C; Barnes BB; Qi L; Corcoran AA
    Sensors (Basel); 2015 Jan; 15(2):2873-87. PubMed ID: 25635412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrieval of aerosol properties and water-leaving reflectance from multi-angular polarimetric measurements over coastal waters.
    Gao M; Zhai PW; Franz B; Hu Y; Knobelspiesse K; Werdell PJ; Ibrahim A; Xu F; Cairns B
    Opt Express; 2018 Apr; 26(7):8968-8989. PubMed ID: 29715856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.
    Gonçalves-Araujo R; Rabe B; Peeken I; Bracher A
    PLoS One; 2018; 13(1):e0190838. PubMed ID: 29304182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing.
    Bailey SW; Franz BA; Werdell PJ
    Opt Express; 2010 Mar; 18(7):7521-7. PubMed ID: 20389774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters.
    He X; Bai Y; Pan D; Tang J; Wang D
    Opt Express; 2012 Aug; 20(18):20754-70. PubMed ID: 23037125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.
    Zeng C; Xu H; Fischer AM
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.
    Wang M
    Appl Opt; 2007 Mar; 46(9):1535-47. PubMed ID: 17334446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Above-water measurements of reflectance and chlorophyll-a algorithms in the Gulf of Lions, NW Mediterranean Sea.
    Ouillon S; Petrenko A
    Opt Express; 2005 Apr; 13(7):2531-48. PubMed ID: 19495144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of water leaving reflectance at ultraviolet wavelengths: radiative transfer simulations.
    Bai R; He X; Bai Y; Li T; Zhu Q; Gong F
    Opt Express; 2020 Sep; 28(20):29714-29729. PubMed ID: 33114864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interference of CDOM in remote sensing of suspended particulate matter (SPM) based on MODIS in the Persian Gulf and Oman Sea.
    Mohammadpour G; Pirasteh S
    Mar Pollut Bull; 2021 Dec; 173(Pt A):113104. PubMed ID: 34872170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions.
    Chang CH; Liu CC; Chung HW; Lee LJ; Yang WC
    Appl Opt; 2014 Feb; 53(4):605-17. PubMed ID: 24514177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones.
    Singh RK; Shanmugam P; He X; Schroeder T
    Opt Express; 2019 Aug; 27(16):A1118-A1145. PubMed ID: 31510495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric correction of satellite ocean color imagery: the black pixel assumption.
    Siegel DA; Wang M; Maritorena S; Robinson W
    Appl Opt; 2000 Jul; 39(21):3582-91. PubMed ID: 18349929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.
    Wang M; Shi W; Jiang L
    Opt Express; 2012 Jan; 20(2):741-53. PubMed ID: 22274419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Out-of-band effects of satellite ocean color sensors.
    Wang M; Naik P; Son S
    Appl Opt; 2016 Mar; 55(9):2312-23. PubMed ID: 27140568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing.
    Jiang L; Wang M
    Opt Express; 2014 Sep; 22(18):21657-78. PubMed ID: 25321543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.