These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28915761)

  • 1. A potential model for sodium chloride solutions based on the TIP4P/2005 water model.
    Benavides AL; Portillo MA; Chamorro VC; Espinosa JR; Abascal JLF; Vega C
    J Chem Phys; 2017 Sep; 147(10):104501. PubMed ID: 28915761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A force field of Li
    Zeron IM; Abascal JLF; Vega C
    J Chem Phys; 2019 Oct; 151(13):134504. PubMed ID: 31594349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium Chloride, NaCl/ϵ: New Force Field.
    Fuentes-Azcatl R; Barbosa MC
    J Phys Chem B; 2016 Mar; 120(9):2460-70. PubMed ID: 26890321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Madrid-2019 force field for electrolytes in water using TIP4P/2005 and scaled charges: Extension to the ions F
    Blazquez S; Conde MM; Abascal JLF; Vega C
    J Chem Phys; 2022 Jan; 156(4):044505. PubMed ID: 35105066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.
    Kann ZR; Skinner JL
    J Chem Phys; 2014 Sep; 141(10):104507. PubMed ID: 25217937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric constant and density of aqueous alkali halide solutions by molecular dynamics: A force field assessment.
    Saric D; Kohns M; Vrabec J
    J Chem Phys; 2020 Apr; 152(16):164502. PubMed ID: 32357782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The short range anion-H interaction is the driving force for crystal formation of ions in water.
    Alejandre J; Chapela GA; Bresme F; Hansen JP
    J Chem Phys; 2009 May; 130(17):174505. PubMed ID: 19425788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaled charges for ions: An improvement but not the final word for modeling electrolytes in water.
    Blazquez S; Conde MM; Vega C
    J Chem Phys; 2023 Feb; 158(5):054505. PubMed ID: 36754806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezing point depression of salt aqueous solutions using the Madrid-2019 model.
    Lamas CP; Vega C; Noya EG
    J Chem Phys; 2022 Apr; 156(13):134503. PubMed ID: 35395902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Force Field Development for Aqueous Electrolytes: 2. Polarizable Models Incorporating Crystalline Chemical Potential and Their Accurate Simulations of Halite, Hydrohalite, Aqueous Solutions of NaCl, and Solubility.
    Dočkal J; Lísal M; Moučka F
    J Chem Theory Comput; 2020 Jun; 16(6):3677-3688. PubMed ID: 32396723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations.
    Mester Z; Panagiotopoulos AZ
    J Chem Phys; 2015 Jan; 142(4):044507. PubMed ID: 25637995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.
    Moučka F; Nezbeda I; Smith WR
    J Chem Theory Comput; 2015 Apr; 11(4):1756-64. PubMed ID: 26574385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communication: Nucleation rates of supersaturated aqueous NaCl using a polarizable force field.
    Jiang H; Debenedetti PG; Panagiotopoulos AZ
    J Chem Phys; 2018 Oct; 149(14):141102. PubMed ID: 30316274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of aqueous poly(oxyethylene) solutions: 1. Atomistic simulations.
    Fischer J; Paschek D; Geiger A; Sadowski G
    J Phys Chem B; 2008 Feb; 112(8):2388-98. PubMed ID: 18251534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameterization of a coarse-grained model with short-ranged interactions for modeling fuel cell membranes with controlled water uptake.
    Lu J; Miller C; Molinero V
    Phys Chem Chem Phys; 2017 Jul; 19(27):17698-17707. PubMed ID: 28653074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Free Energies of Aqueous Electrolyte Solutions from Molecular Simulations with Non-polarizable Force Fields.
    Habibi P; Polat HM; Blazquez S; Vega C; Dey P; Vlugt TJH; Moultos OA
    J Phys Chem Lett; 2024 Apr; 15(16):4477-4485. PubMed ID: 38634502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What ice can teach us about water interactions: a critical comparison of the performance of different water models.
    Vega C; Abascal JL; Conde MM; Aragones JL
    Faraday Discuss; 2009; 141():251-76; discussion 309-46. PubMed ID: 19227361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration dependence of the dielectric permittivity, structure, and dynamics of aqueous NaCl solutions: comparison between the Drude oscillator and electronic continuum models.
    Renou R; Ding M; Zhu H; Szymczyk A; Malfreyt P; Ghoufi A
    J Phys Chem B; 2014 Apr; 118(14):3931-40. PubMed ID: 24661006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution Coarse-Grained Model of Hydrated Anion-Exchange Membranes that Accounts for Hydrophobic and Ionic Interactions through Short-Ranged Potentials.
    Lu J; Jacobson LC; Perez Sirkin YA; Molinero V
    J Chem Theory Comput; 2017 Jan; 13(1):245-264. PubMed ID: 28068769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.