BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 28916151)

  • 1. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method.
    Hirao I; Kimoto M; Lee KH
    Biochimie; 2018 Feb; 145():15-21. PubMed ID: 28916151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications.
    Kimoto M; Nakamura M; Hirao I
    Nucleic Acids Res; 2016 Sep; 44(15):7487-94. PubMed ID: 27387284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Aptamer Generation by Genetic Alphabet Expansion SELEX (ExSELEX) Using an Unnatural Base Pair System.
    Kimoto M; Matsunaga K; Hirao I
    Methods Mol Biol; 2016; 1380():47-60. PubMed ID: 26552815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications.
    Matsunaga K; Kimoto M; Hanson C; Sanford M; Young HA; Hirao I
    Sci Rep; 2015 Dec; 5():18478. PubMed ID: 26690672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.
    Matsunaga KI; Kimoto M; Hirao I
    J Am Chem Soc; 2017 Jan; 139(1):324-334. PubMed ID: 27966933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving Aptamers with Unnatural Base Pairs.
    Kimoto M; Matsunaga KI; Hirao I
    Curr Protoc Chem Biol; 2017 Dec; 9(4):315-339. PubMed ID: 29241296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Success probability of high-affinity DNA aptamer generation by genetic alphabet expansion.
    Kimoto M; Tan HP; Tan YS; Mislan NABM; Hirao I
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1871):20220031. PubMed ID: 36633272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology.
    Hamashima K; Kimoto M; Hirao I
    Curr Opin Chem Biol; 2018 Oct; 46():108-114. PubMed ID: 30059833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Alphabet Expansion Provides Versatile Specificities and Activities of Unnatural-Base DNA Aptamers Targeting Cancer Cells.
    Futami K; Kimoto M; Lim YWS; Hirao I
    Mol Ther Nucleic Acids; 2019 Mar; 14():158-170. PubMed ID: 30594072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for Improving Aptamer Binding Affinity.
    Hasegawa H; Savory N; Abe K; Ikebukuro K
    Molecules; 2016 Mar; 21(4):421. PubMed ID: 27043498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular affinity rulers: systematic evaluation of DNA aptamers for their applicabilities in ELISA.
    Kimoto M; Shermane Lim YW; Hirao I
    Nucleic Acids Res; 2019 Sep; 47(16):8362-8374. PubMed ID: 31392985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA Sequencing Method Including Unnatural Bases for DNA Aptamer Generation by Genetic Alphabet Expansion.
    Hamashima K; Soong YT; Matsunaga KI; Kimoto M; Hirao I
    ACS Synth Biol; 2019 Jun; 8(6):1401-1410. PubMed ID: 30995835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of high-affinity DNA aptamers using an expanded genetic alphabet.
    Kimoto M; Yamashige R; Matsunaga K; Yokoyama S; Hirao I
    Nat Biotechnol; 2013 May; 31(5):453-7. PubMed ID: 23563318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Customised nucleic acid libraries for enhanced aptamer selection and performance.
    Pfeiffer F; Rosenthal M; Siegl J; Ewers J; Mayer G
    Curr Opin Biotechnol; 2017 Dec; 48():111-118. PubMed ID: 28437710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification.
    Matsunaga KI; Kimoto M; Lim VW; Tan HP; Wong YQ; Sun W; Vasoo S; Leo YS; Hirao I
    Nucleic Acids Res; 2021 Nov; 49(20):11407-11424. PubMed ID: 34169309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of a DNA aptamer that binds 8-OHdG using GMP-agarose.
    Miyachi Y; Shimizu N; Ogino C; Fukuda H; Kondo A
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3619-22. PubMed ID: 19450981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamers: selection, modification and application to nervous system diseases.
    Yang Y; Ren X; Schluesener HJ; Zhang Z
    Curr Med Chem; 2011; 18(27):4159-68. PubMed ID: 21838689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-constructive SELEX: a new strategy for screening DNA aptamer binding to Globo H.
    Wang CY; Wu CY; Hung TC; Wong CH; Chen CH
    Biochem Biophys Res Commun; 2014 Sep; 452(3):484-9. PubMed ID: 25159850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique Thermal Stability of Unnatural Hydrophobic Ds Bases in Double-Stranded DNAs.
    Kimoto M; Hirao I
    ACS Synth Biol; 2017 Oct; 6(10):1944-1951. PubMed ID: 28704034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of DNA Signaling Aptamer from Multiple Candidates Obtained from SELEX with Next-generation Sequencing.
    Yoshitomi T; Wayama F; Kimura K; Wakui K; Furusho H; Yoshimoto K
    Anal Sci; 2019; 35(1):113-116. PubMed ID: 30626772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.