BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 28916189)

  • 1. Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved.
    Ramos AR; Elong Edimo W; Erneux C
    Adv Biol Regul; 2018 Jan; 67():40-48. PubMed ID: 28916189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoinositide 5-phosphatases SKIP and SHIP2 in ruffles, the endoplasmic reticulum and the nucleus: An update.
    Ramos AR; Ghosh S; Suhel T; Chevalier C; Obeng EO; Fafilek B; Krejci P; Beck B; Erneux C
    Adv Biol Regul; 2020 Jan; 75():100660. PubMed ID: 31628071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration in 1321 N1 glioblastoma cells.
    Elong Edimo W; Ghosh S; Derua R; Janssens V; Waelkens E; Vanderwinden JM; Robe P; Erneux C
    J Cell Sci; 2016 Mar; 129(6):1101-14. PubMed ID: 26826186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid phosphatases SKIP and SHIP2 regulate fibronectin-dependent cell migration in glioblastoma.
    Ramos AR; Ghosh S; Dedobbeleer M; Robe PA; Rogister B; Erneux C
    FEBS J; 2019 Mar; 286(6):1120-1135. PubMed ID: 30695232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of phosphoinositide 5-phosphatases on phosphoinositides in cell function and human disease.
    Ramos AR; Ghosh S; Erneux C
    J Lipid Res; 2019 Feb; 60(2):276-286. PubMed ID: 30194087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential SKIP expression in PTEN-deficient glioblastoma regulates cellular proliferation and migration.
    Davies EM; Kong AM; Tan A; Gurung R; Sriratana A; Bukczynska PE; Ooms LM; McLean CA; Tiganis T; Mitchell CA
    Oncogene; 2015 Jul; 34(28):3711-27. PubMed ID: 25241900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SHIP2 signaling in normal and pathological situations: Its impact on cell proliferation.
    Elong Edimo W; Schurmans S; Roger PP; Erneux C
    Adv Biol Regul; 2014 Jan; 54():142-51. PubMed ID: 24091101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease.
    Ooms LM; Horan KA; Rahman P; Seaton G; Gurung R; Kethesparan DS; Mitchell CA
    Biochem J; 2009 Apr; 419(1):29-49. PubMed ID: 19272022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silencer of death domains (SODD) inhibits skeletal muscle and kidney enriched inositol 5-phosphatase (SKIP) and regulates phosphoinositide 3-kinase (PI3K)/Akt signaling to the actin cytoskeleton.
    Rahman P; Huysmans RD; Wiradjaja F; Gurung R; Ooms LM; Sheffield DA; Dyson JM; Layton MJ; Sriratana A; Takada H; Tiganis T; Mitchell CA
    J Biol Chem; 2011 Aug; 286(34):29758-70. PubMed ID: 21712384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoinositide phosphatases: just as important as the kinases.
    Dyson JM; Fedele CG; Davies EM; Becanovic J; Mitchell CA
    Subcell Biochem; 2012; 58():215-79. PubMed ID: 22403078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SHIP2 interactor Myo1c is required for cell migration in 1321 N1 glioblastoma cells.
    Edimo WE; Ramos AR; Ghosh S; Vanderwinden JM; Erneux C
    Biochem Biophys Res Commun; 2016 Aug; 476(4):508-514. PubMed ID: 27246739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The diversity and possible functions of the inositol polyphosphate 5-phosphatases.
    Erneux C; Govaerts C; Communi D; Pesesse X
    Biochim Biophys Acta; 1998 Dec; 1436(1-2):185-99. PubMed ID: 9838104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of OCRL increases ciliary PI(4,5)P
    Prosseda PP; Luo N; Wang B; Alvarado JA; Hu Y; Sun Y
    J Cell Sci; 2017 Oct; 130(20):3447-3454. PubMed ID: 28871046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of phosphoinositide signaling by the inositol polyphosphate 5-phosphatases.
    Astle MV; Seaton G; Davies EM; Fedele CG; Rahman P; Arsala L; Mitchell CA
    IUBMB Life; 2006 Aug; 58(8):451-6. PubMed ID: 16916781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of inhibitors of inositol 5-phosphatases through multiple screening strategies.
    Pirruccello M; Nandez R; Idevall-Hagren O; Alcazar-Roman A; Abriola L; Berwick SA; Lucast L; Morel D; De Camilli P
    ACS Chem Biol; 2014 Jun; 9(6):1359-68. PubMed ID: 24742366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling.
    Li H; Marshall AJ
    Cell Signal; 2015 Sep; 27(9):1789-98. PubMed ID: 26022180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphatidylinositol Kinases and Phosphatases in
    Nakada-Tsukui K; Watanabe N; Maehama T; Nozaki T
    Front Cell Infect Microbiol; 2019; 9():150. PubMed ID: 31245297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases.
    Eramo MJ; Mitchell CA
    Biochem Soc Trans; 2016 Feb; 44(1):240-52. PubMed ID: 26862211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SHIP2 signalling at the plasma membrane, in the nucleus and at focal contacts.
    Elong Edimo W; Vanderwinden JM; Erneux C
    Adv Biol Regul; 2013 Jan; 53(1):28-37. PubMed ID: 23040614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SHIP2 regulates epithelial cell polarity through its lipid product, which binds to Dlg1, a pathway subverted by hepatitis C virus core protein.
    Awad A; Sar S; Barré R; Cariven C; Marin M; Salles JP; Erneux C; Samuel D; Gassama-Diagne A
    Mol Biol Cell; 2013 Jul; 24(14):2171-85. PubMed ID: 23699395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.