BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 28916430)

  • 1. Therapeutic approaches to CFTR dysfunction: From discovery to drug development.
    Li H; Pesce E; Sheppard DN; Singh AK; Pedemonte N
    J Cyst Fibros; 2018 Mar; 17(2S):S14-S21. PubMed ID: 28916430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CFTR processing, trafficking and interactions.
    Amaral MD; Hutt DM; Tomati V; Botelho HM; Pedemonte N
    J Cyst Fibros; 2020 Mar; 19 Suppl 1():S33-S36. PubMed ID: 31680043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport.
    Li H; Salomon JJ; Sheppard DN; Mall MA; Galietta LJ
    Curr Opin Pharmacol; 2017 Jun; 34():91-97. PubMed ID: 29065356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets.
    Hanrahan JW; Sato Y; Carlile GW; Jansen G; Young JC; Thomas DY
    Expert Opin Ther Targets; 2019 Aug; 23(8):711-724. PubMed ID: 31169041
    [No Abstract]   [Full Text] [Related]  

  • 6. Targeting F508del-CFTR to develop rational new therapies for cystic fibrosis.
    Cai ZW; Liu J; Li HY; Sheppard DN
    Acta Pharmacol Sin; 2011 Jun; 32(6):693-701. PubMed ID: 21642944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological Correction of Cystic Fibrosis: Molecular Mechanisms at the Plasma Membrane to Augment Mutant CFTR Function.
    Arora K; Naren AP
    Curr Drug Targets; 2016; 17(11):1275-81. PubMed ID: 26648081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repairing the basic defect in cystic fibrosis - one approach is not enough.
    Farinha CM; Matos P
    FEBS J; 2016 Jan; 283(2):246-64. PubMed ID: 26416076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies.
    Amaral MD
    Curr Drug Targets; 2011 May; 12(5):683-93. PubMed ID: 21039334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HGF stimulation of Rac1 signaling enhances pharmacological correction of the most prevalent cystic fibrosis mutant F508del-CFTR.
    Moniz S; Sousa M; Moraes BJ; Mendes AI; Palma M; Barreto C; Fragata JI; Amaral MD; Matos P
    ACS Chem Biol; 2013 Feb; 8(2):432-42. PubMed ID: 23148778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological rescue of the mutant cystic fibrosis transmembrane conductance regulator (CFTR) detected by use of a novel fluorescence platform.
    Holleran JP; Glover ML; Peters KW; Bertrand CA; Watkins SC; Jarvik JW; Frizzell RA
    Mol Med; 2012 May; 18(1):685-96. PubMed ID: 22396015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review.
    Yang H; Ma T
    Expert Opin Ther Pat; 2015; 25(9):991-1002. PubMed ID: 25971311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating.
    Cai Z; Palmai-Pallag T; Khuituan P; Mutolo MJ; Boinot C; Liu B; Scott-Ward TS; Callebaut I; Harris A; Sheppard DN
    J Physiol; 2015 Jun; 593(11):2427-46. PubMed ID: 25763566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting species differences to understand the CFTR Cl- channel.
    Bose SJ; Scott-Ward TS; Cai Z; Sheppard DN
    Biochem Soc Trans; 2015 Oct; 43(5):975-82. PubMed ID: 26517912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview on chemical structures as ΔF508-CFTR correctors.
    Spanò V; Montalbano A; Carbone A; Scudieri P; Galietta LJV; Barraja P
    Eur J Med Chem; 2019 Oct; 180():430-448. PubMed ID: 31326599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the role of protein kinase CK2 in the maturation/stability of F508del-CFTR.
    D'Amore C; Borgo C; Bosello-Travain V; Vilardell J; Salizzato V; Pinna LA; Venerando A; Salvi M
    Biochim Biophys Acta Mol Basis Dis; 2020 Mar; 1866(3):165611. PubMed ID: 31740403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New pharmacological approaches for cystic fibrosis: promises, progress, pitfalls.
    Bell SC; De Boeck K; Amaral MD
    Pharmacol Ther; 2015 Jan; 145():19-34. PubMed ID: 24932877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Molecular Chaperones for the Treatment of Cystic Fibrosis: Is It a Viable Approach?
    Heard A; Thompson J; Carver J; Bakey M; Wang XR
    Curr Drug Targets; 2015; 16(9):958-64. PubMed ID: 25981601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SUMOylation Inhibition Enhances Protein Transcription under CMV Promoter: A Lesson from a Study with the F508del-CFTR Mutant.
    Borgo C; D'Amore C; Capurro V; Tomati V; Pedemonte N; Bosello Travain V; Salvi M
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular interactions and ion transport in cystic fibrosis.
    Guggino WB; Banks-Schlegel SP
    Am J Respir Crit Care Med; 2004 Oct; 170(7):815-20. PubMed ID: 15447951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.