BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 28916561)

  • 21. Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation.
    Cheng G; Karunakaran R; East AK; Munoz-Azcarate O; Poole PS
    FEMS Microbiol Lett; 2017 Apr; 364(8):. PubMed ID: 28333211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sinorhizobium meliloti dctA mutants with partial ability to transport dicarboxylic acids.
    Yurgel SN; Kahn ML
    J Bacteriol; 2005 Feb; 187(3):1161-72. PubMed ID: 15659691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca.
    Karunakaran R; Ramachandran VK; Seaman JC; East AK; Mouhsine B; Mauchline TH; Prell J; Skeffington A; Poole PS
    J Bacteriol; 2009 Jun; 191(12):4002-14. PubMed ID: 19376875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Proteomic Profile of the Bacterium Sinorhizobium meliloti Depends on Its Life Form and Host Plant Species].
    Antonets KS; Onishchuk OP; Kurchak ON; Volkov KV; Lykholay AN; Andreeva EA; Andronov EE; Pinaev AG; Provorov NA; Nizhnikov AA
    Mol Biol (Mosk); 2018; 52(5):898-904. PubMed ID: 30363063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two C4-dicarboxylate transport systems in Rhizobium sp. NGR234: rhizobial dicarboxylate transport is essential for nitrogen fixation in tropical legume symbioses.
    van Slooten JC; Bhuvanasvari TV; Bardin S; Stanley J
    Mol Plant Microbe Interact; 1992; 5(2):179-86. PubMed ID: 1617199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa.
    Wippel K; Long SR
    J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Most
    Lang C; Barnett MJ; Fisher RF; Smith LS; Diodati ME; Long SR
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30305320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti.
    Robinson JB; Bauer WD
    J Bacteriol; 1993 Apr; 175(8):2284-91. PubMed ID: 8468289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Co-catabolism of arginine and succinate drives symbiotic nitrogen fixation.
    Flores-Tinoco CE; Tschan F; Fuhrer T; Margot C; Sauer U; Christen M; Christen B
    Mol Syst Biol; 2020 Jun; 16(6):e9419. PubMed ID: 32490601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression.
    Starker CG; Parra-Colmenares AL; Smith L; Mitra RM; Long SR
    Plant Physiol; 2006 Feb; 140(2):671-80. PubMed ID: 16407449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant.
    Jones KM; Sharopova N; Lohar DP; Zhang JQ; VandenBosch KA; Walker GC
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):704-9. PubMed ID: 18184805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Malic enzyme cofactor and domain requirements for symbiotic N2 fixation by Sinorhizobium meliloti.
    Mitsch MJ; Cowie A; Finan TM
    J Bacteriol; 2007 Jan; 189(1):160-8. PubMed ID: 17071765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic resources for identification of the minimal N2 -fixing symbiotic genome.
    diCenzo GC; Zamani M; Milunovic B; Finan TM
    Environ Microbiol; 2016 Sep; 18(8):2534-47. PubMed ID: 26768651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates.
    Oono R; Anderson CG; Denison RF
    Proc Biol Sci; 2011 Sep; 278(1718):2698-703. PubMed ID: 21270038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches.
    Maunoury N; Redondo-Nieto M; Bourcy M; Van de Velde W; Alunni B; Laporte P; Durand P; Agier N; Marisa L; Vaubert D; Delacroix H; Duc G; Ratet P; Aggerbeck L; Kondorosi E; Mergaert P
    PLoS One; 2010 Mar; 5(3):e9519. PubMed ID: 20209049
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.
    Lu M; Jiao S; Gao E; Song X; Li Z; Hao X; Rensing C; Wei G
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons.
    Reid CJ; Walshaw DL; Poole PS
    Microbiology (Reading); 1996 Sep; 142 ( Pt 9)():2603-12. PubMed ID: 8828229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: nucleotide sequence and deduced products of dctA, dctB, and dctD.
    Watson RJ
    Mol Plant Microbe Interact; 1990; 3(3):174-81. PubMed ID: 2134335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of exopolysaccharide production in Rhizobium leguminosarum biovar viciae WSM710 involves exoR.
    Reeve WG; Dilworth MJ; Tiwari RP; Glenn AR
    Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1951-1958. PubMed ID: 9202471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NAD(+)-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation.
    Driscoll BT; Finan TM
    Mol Microbiol; 1993 Mar; 7(6):865-73. PubMed ID: 8387144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.