These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28917001)

  • 1. A neural network model for familiarity and context learning during honeybee foraging flights.
    Müller J; Nawrot M; Menzel R; Landgraf T
    Biol Cybern; 2018 Apr; 112(1-2):113-126. PubMed ID: 28917001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the insect mushroom bodies: application to a delayed match-to-sample task.
    Arena P; Patané L; Stornanti V; Termini PS; Zäpf B; Strauss R
    Neural Netw; 2013 May; 41():202-11. PubMed ID: 23246431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating visual navigation using spiking neural network models of the insect mushroom bodies.
    Jesusanmi OO; Amin AA; Domcsek N; Knight JC; Philippides A; Nowotny T; Graham P
    Front Physiol; 2024; 15():1379977. PubMed ID: 38841209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The insect mushroom body, an experience-dependent recoding device.
    Menzel R
    J Physiol Paris; 2014; 108(2-3):84-95. PubMed ID: 25092259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fly-Inspired Mushroom Bodies Model for Sensory-Motor Control Through Sequence and Subsequence Learning.
    Arena P; Calí M; Patané L; Portera A; Strauss R
    Int J Neural Syst; 2016 Sep; 26(6):1650035. PubMed ID: 27354193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Familiarity Detection is an Intrinsic Property of Cortical Microcircuits with Bidirectional Synaptic Plasticity.
    Zhang X; Ju H; Penney TB; VanDongen AMJ
    eNeuro; 2017; 4(3):. PubMed ID: 28534043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous Visual Navigation of an Indoor Environment Using a Parsimonious, Insect Inspired Familiarity Algorithm.
    Gaffin DD; Brayfield BP
    PLoS One; 2016; 11(4):e0153706. PubMed ID: 27119720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spiking neural program for sensorimotor control during foraging in flying insects.
    Rapp H; Nawrot MP
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28412-28421. PubMed ID: 33122439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect Bio-inspired Neural Network Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual Generalization and Stimulus Location Invariance in the Miniature Brain of Honeybees.
    Roper M; Fernando C; Chittka L
    PLoS Comput Biol; 2017 Feb; 13(2):e1005333. PubMed ID: 28158189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spiking neural network model of an actor-critic learning agent.
    Potjans W; Morrison A; Diesmann M
    Neural Comput; 2009 Feb; 21(2):301-39. PubMed ID: 19196231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using an Insect Mushroom Body Circuit to Encode Route Memory in Complex Natural Environments.
    Ardin P; Peng F; Mangan M; Lagogiannis K; Webb B
    PLoS Comput Biol; 2016 Feb; 12(2):e1004683. PubMed ID: 26866692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mushroom body extrinsic neurons in the honeybee (Apis mellifera) brain integrate context and cue values upon attentional stimulus selection.
    Filla I; Menzel R
    J Neurophysiol; 2015 Sep; 114(3):2005-14. PubMed ID: 26224779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory use in insect visual navigation.
    Collett TS; Collett M
    Nat Rev Neurosci; 2002 Jul; 3(7):542-52. PubMed ID: 12094210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.
    MaBouDi H; Shimazaki H; Giurfa M; Chittka L
    PLoS Comput Biol; 2017 Jun; 13(6):e1005551. PubMed ID: 28640825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unified mechanism for innate and learned visual landmark guidance in the insect central complex.
    Goulard R; Buehlmann C; Niven JE; Graham P; Webb B
    PLoS Comput Biol; 2021 Sep; 17(9):e1009383. PubMed ID: 34555013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of orientation flights on homing performance in honeybees.
    Capaldi EA; Dyer FC
    J Exp Biol; 1999 Jun; 202(Pt 12):1655-66. PubMed ID: 10333511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.