BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28917039)

  • 21. Characterization of ribonuclease H activities present in two cell-free protein synthesizing systems, the wheat germ extract and the rabbit reticulocyte lysate.
    Cazenave C; Frank P; Büsen W
    Biochimie; 1993; 75(1-2):113-22. PubMed ID: 8389210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes.
    Hino M; Kataoka M; Kajimoto K; Yamamoto T; Kido J; Shinohara Y; Baba Y
    J Biotechnol; 2008 Jan; 133(2):183-9. PubMed ID: 17826860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Translation of partially purified poly(A)+ protamine messenger RNA components in wheat germ and rabbit reticulocyte cell-free systems. Evidence for translational control mechanisms.
    Gedamu L; Iatrou K; Dixon GH
    Biochim Biophys Acta; 1979 May; 562(3):481-94. PubMed ID: 454612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A technique to increase protein yield in a rabbit reticulocyte lysate translation system.
    Anastasina M; Terenin I; Butcher SJ; Kainov DE
    Biotechniques; 2014 Jan; 56(1):36-9. PubMed ID: 24447137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy.
    Low SC; Grundner-Culemann E; Harney JW; Berry MJ
    EMBO J; 2000 Dec; 19(24):6882-90. PubMed ID: 11118223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The 3' untranslated region of manganese superoxide dismutase RNA contains a translational enhancer element.
    Chung DJ; Wright AE; Clerch LB
    Biochemistry; 1998 Nov; 37(46):16298-306. PubMed ID: 9819222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro translation of messenger RNA in a rabbit reticulocyte lysate cell-free system.
    Olliver L; Boyd CD
    Methods Mol Biol; 1998; 86():221-7. PubMed ID: 9664473
    [No Abstract]   [Full Text] [Related]  

  • 28. Unique features of selenocysteine incorporation function within the context of general eukaryotic translational processes.
    Small-Howard AL; Berry MJ
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1493-7. PubMed ID: 16246153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selenocysteine incorporation directed from the 3'UTR: characterization of eukaryotic EFsec and mechanistic implications.
    Berry MJ; Tujebajeva RM; Copeland PR; Xu XM; Carlson BA; Martin GW; Low SC; Mansell JB; Grundner-Culemann E; Harney JW; Driscoll DM; Hatfield DL
    Biofactors; 2001; 14(1-4):17-24. PubMed ID: 11568436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incomplete polypeptides are formed in vitro by premature chain termination.
    Chroboczek J
    Eur J Biochem; 1985 Jun; 149(3):565-9. PubMed ID: 4006942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mammalian Trit1 is a tRNA([Ser]Sec)-isopentenyl transferase required for full selenoprotein expression.
    Fradejas N; Carlson BA; Rijntjes E; Becker NP; Tobe R; Schweizer U
    Biochem J; 2013 Mar; 450(2):427-32. PubMed ID: 23289710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear assembly of UGA decoding complexes on selenoprotein mRNAs: a mechanism for eluding nonsense-mediated decay?
    de Jesus LA; Hoffmann PR; Michaud T; Forry EP; Small-Howard A; Stillwell RJ; Morozova N; Harney JW; Berry MJ
    Mol Cell Biol; 2006 Mar; 26(5):1795-805. PubMed ID: 16478999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Creating Selenocysteine-Specific Reporters Using Inteins.
    Chung CZ; Söll D; Krahn N
    Methods Mol Biol; 2023; 2676():69-86. PubMed ID: 37277625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Models for assessing the role of selenoproteins in health.
    Moustafa ME; Kumaraswamy E; Zhong N; Rao M; Carlson BA; Hatfield DL
    J Nutr; 2003 Jul; 133(7 Suppl):2494S-2496S. PubMed ID: 12840229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of eukaryotic cell-free expression systems.
    Hartsough EM; Shah P; Larsen AC; Chaput JC
    Biotechniques; 2015 Sep; 59(3):149-51. PubMed ID: 26345507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell free synthesis of Toxoplasma gondii antigens.
    Prince JB; Koven-Quinn MA; Remington JS; Sharma SD
    Mol Biochem Parasitol; 1985 Nov; 17(2):163-70. PubMed ID: 2866444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Specific Chemical Approaches for Studying Mammalian Ribosomes Complexed with Ligands Involved in Selenoprotein Synthesis.
    Kossinova O; Malygin A; Krol A; Karpova G
    Methods Mol Biol; 2018; 1661():73-92. PubMed ID: 28917038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of cell-free protein synthesis in aqueous two-phase systems.
    Marszal E; Suchova M; Konecny P; Scouten WH
    J Mol Recognit; 1995; 8(1-2):151-6. PubMed ID: 7541227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilization of selenocysteine in early-branching fungal phyla.
    Mariotti M; Salinas G; Gabaldón T; Gladyshev VN
    Nat Microbiol; 2019 May; 4(5):759-765. PubMed ID: 30742068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SECIS-binding protein 2 promotes cell survival by protecting against oxidative stress.
    Papp LV; Lu J; Bolderson E; Boucher D; Singh R; Holmgren A; Khanna KK
    Antioxid Redox Signal; 2010 Apr; 12(7):797-808. PubMed ID: 19803747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.