These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Structural basis of trehalose recognition by the mycobacterial LpqY-SugABC transporter. Furze CM; Delso I; Casal E; Guy CS; Seddon C; Brown CM; Parker HL; Radhakrishnan A; Pacheco-Gomez R; Stansfeld PJ; Angulo J; Cameron AD; Fullam E J Biol Chem; 2021; 296():100307. PubMed ID: 33476646 [TBL] [Abstract][Full Text] [Related]
4. Molecular recognition of trehalose and trehalose analogues by Liang J; Liu F; Xu P; Shangguan W; Hu T; Wang S; Yang X; Xiong Z; Yang X; Guddat LW; Yu B; Rao Z; Zhang B Proc Natl Acad Sci U S A; 2023 Aug; 120(35):e2307625120. PubMed ID: 37603751 [TBL] [Abstract][Full Text] [Related]
6. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Kalscheuer R; Weinrick B; Veeraraghavan U; Besra GS; Jacobs WR Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21761-6. PubMed ID: 21118978 [TBL] [Abstract][Full Text] [Related]
7. Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. Liu F; Liang J; Zhang B; Gao Y; Yang X; Hu T; Yang H; Xu W; Guddat LW; Rao Z Sci Adv; 2020 Oct; 6(44):. PubMed ID: 33127676 [TBL] [Abstract][Full Text] [Related]
8. Structural insights into trehalose capture and translocation by mycobacterial LpqY-SugABC. Liang J; Yang X; Hu T; Gao Y; Yang Q; Yang H; Peng W; Zhou X; Guddat LW; Zhang B; Rao Z; Liu F Structure; 2023 Oct; 31(10):1158-1165.e3. PubMed ID: 37619560 [TBL] [Abstract][Full Text] [Related]
9. Structural analysis of LpqY, a substrate-binding protein from the SugABC transporter of Mycobacterium tuberculosis, provides insights into its trehalose specificity. Sharma D; Singh M; Kaur P; Das U Acta Crystallogr D Struct Biol; 2022 Jul; 78(Pt 7):835-845. PubMed ID: 35775983 [TBL] [Abstract][Full Text] [Related]
10. Modulation of Trehalose Dimycolate and Immune System by Rv0774c Protein Enhanced the Intracellular Survival of Kumar A; Saini V; Kumar A; Kaur J; Kaur J Front Cell Infect Microbiol; 2017; 7():289. PubMed ID: 28713776 [No Abstract] [Full Text] [Related]
11. PPE51 mediates uptake of trehalose across the mycomembrane of Mycobacterium tuberculosis. Babu Sait MR; Koliwer-Brandl H; Stewart JA; Swarts BM; Jacobsen M; Ioerger TR; Kalscheuer R Sci Rep; 2022 Feb; 12(1):2097. PubMed ID: 35136132 [TBL] [Abstract][Full Text] [Related]
13. Chemoenzymatic synthesis of trehalose analogues: rapid access to chemical probes for investigating mycobacteria. Urbanek BL; Wing DC; Haislop KS; Hamel CJ; Kalscheuer R; Woodruff PJ; Swarts BM Chembiochem; 2014 Sep; 15(14):2066-70. PubMed ID: 25139066 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of biofilm formation in Mycobacterium smegmatis by Parinari curatellifolia leaf extracts. Bhunu B; Mautsa R; Mukanganyama S BMC Complement Altern Med; 2017 May; 17(1):285. PubMed ID: 28558683 [TBL] [Abstract][Full Text] [Related]
15. Interrogation of the Pathogen Box reveals small molecule ligands against the mycobacterial trehalose transporter LpqY-SugABC. Radhakrishnan A; Brown CM; Guy CS; Cooper C; Pacheco-Gomez R; Stansfeld PJ; Fullam E RSC Med Chem; 2022 Oct; 13(10):1225-1233. PubMed ID: 36320433 [TBL] [Abstract][Full Text] [Related]
16. 4-Hydroxy-2-pyridone Derivatives and the δ-pyrone Isostere as Novel Agents Against Mycobacterium smegmatis Biofilm Inhibitors. Borkar MR; Nandan S; Nagaraj HKM; Puttur J; Manniyodath J; Chatterji D; Coutinho EC Med Chem; 2019; 15(1):28-37. PubMed ID: 29793410 [TBL] [Abstract][Full Text] [Related]
17. The role of chemoenzymatic synthesis in advancing trehalose analogues as tools for combatting bacterial pathogens. Kalera K; Stothard AI; Woodruff PJ; Swarts BM Chem Commun (Camb); 2020 Oct; 56(78):11528-11547. PubMed ID: 32914793 [TBL] [Abstract][Full Text] [Related]