These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28917108)

  • 1. Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste.
    Capson-Tojo G; Ruiz D; Rouez M; Crest M; Steyer JP; Bernet N; Delgenès JP; Escudié R
    Bioresour Technol; 2017 Dec; 245(Pt A):724-733. PubMed ID: 28917108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.
    Capson-Tojo G; Moscoviz R; Ruiz D; Santa-Catalina G; Trably E; Rouez M; Crest M; Steyer JP; Bernet N; Delgenès JP; Escudié R
    Bioresour Technol; 2018 Jul; 260():157-168. PubMed ID: 29625288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production.
    Capson-Tojo G; Rouez M; Crest M; Trably E; Steyer JP; Bernet N; Delgenès JP; Escudié R
    Waste Manag; 2017 Nov; 69():470-479. PubMed ID: 28888806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time recovery strategies for volatile fatty acid-inhibited anaerobic digestion of food waste for methane production.
    Zhang W; Xing W; Li R
    Bioresour Technol; 2018 Oct; 265():82-92. PubMed ID: 29883850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization.
    Wan S; Sun L; Douieb Y; Sun J; Luo W
    Bioresour Technol; 2013 Oct; 146():619-627. PubMed ID: 23974214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversibility of propionic acid inhibition to anaerobic digestion: Inhibition kinetics and microbial mechanism.
    Han Y; Green H; Tao W
    Chemosphere; 2020 Sep; 255():126840. PubMed ID: 32387725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste.
    Liotta F; d'Antonio G; Esposito G; Fabbricino M; van Hullebusch ED; Lens PN; Pirozzi F; Pontoni L
    Waste Manag Res; 2014 Oct; 32(10):947-53. PubMed ID: 25281663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic modelling and synergistic impact evaluation for the anaerobic co-digestion of distillers' grains and food waste by ethanol pre-fermentation.
    Yu M; Gao M; Wang L; Ren Y; Wu C; Ma H; Wang Q
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30281-30291. PubMed ID: 30155637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effects of co-trace elements on anaerobic co-digestion of food waste and sewage sludge at high organic load.
    Bardi MJ; Aminirad H
    Environ Sci Pollut Res Int; 2020 May; 27(15):18129-18144. PubMed ID: 32172420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance and kinetic evaluation of semi-continuously fed anaerobic digesters treating food waste: role of trace elements.
    Zhang W; Wu S; Guo J; Zhou J; Dong R
    Bioresour Technol; 2015 Feb; 178():297-305. PubMed ID: 25160748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance and kinetic evaluation of a semi-continuously fed anaerobic digester treating food waste: effect of trace elements on the digester recovery and stability.
    Wei Q; Zhang W; Guo J; Wu S; Tan T; Wang F; Dong R
    Chemosphere; 2014 Dec; 117():477-85. PubMed ID: 25240722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community.
    Peng X; Zhang S; Li L; Zhao X; Ma Y; Shi D
    Bioresour Technol; 2018 Aug; 262():148-158. PubMed ID: 29704762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced volatile fatty acid degradation and methane production efficiency by biochar addition in food waste-sludge co-digestion: A step towards increased organic loading efficiency in co-digestion.
    Kaur G; Johnravindar D; Wong JWC
    Bioresour Technol; 2020 Jul; 308():123250. PubMed ID: 32244132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-production of Biohydrogen and Biomethane from Chicken Manure and Food Waste in a Two-Stage Anaerobic Fermentation Process.
    Liu X; Yang Y; Wu N; Wei Y; Shan H; Zhao H
    Appl Biochem Biotechnol; 2022 Aug; 194(8):3706-3720. PubMed ID: 35499692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic co-digestion of food waste and chemically enhanced primary-treated sludge under mesophilic and thermophilic conditions.
    Obulisamy PK; Chakraborty D; Selvam A; Wong JW
    Environ Technol; 2016 Dec; 37(24):3200-7. PubMed ID: 27315419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanosarcina plays a main role during methanogenesis of high-solids food waste and cardboard.
    Capson-Tojo G; Trably E; Rouez M; Crest M; Bernet N; Steyer JP; Delgenès JP; Escudié R
    Waste Manag; 2018 Jun; 76():423-430. PubMed ID: 29636217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic effects of rice straw and rice bran on enhanced methane production and process stability of anaerobic digestion of food waste.
    Hou T; Zhao J; Lei Z; Shimizu K; Zhang Z
    Bioresour Technol; 2020 Oct; 314():123775. PubMed ID: 32652449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating: Microbial and metabolic insights.
    Ma J; Wei H; Su Y; Gu W; Wang B; Xie B
    Bioresour Technol; 2020 Oct; 313():123706. PubMed ID: 32585453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials.
    Chowdhury B; Lin L; Dhar BR; Islam MN; McCartney D; Kumar A
    Chemosphere; 2019 Dec; 236():124362. PubMed ID: 31323554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.