BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28917191)

  • 1. Enhanced Arabidopsis disease resistance against Botrytis cinerea induced by sulfur dioxide.
    Xue M; Yi H
    Ecotoxicol Environ Saf; 2018 Jan; 147():523-529. PubMed ID: 28917191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants.
    La Camera S; L'haridon F; Astier J; Zander M; Abou-Mansour E; Page G; Thurow C; Wendehenne D; Gatz C; Métraux JP; Lamotte O
    Plant J; 2011 Nov; 68(3):507-19. PubMed ID: 21756272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection.
    Choi B; Ghosh R; Gururani MA; Shanmugam G; Jeon J; Kim J; Park SC; Jeong MJ; Han KH; Bae DW; Bae H
    Sci Rep; 2017 May; 7(1):2527. PubMed ID: 28559545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.
    Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C
    Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quality and PR gene expression of table grapes treated with ozone and sulfur dioxide to control fungal decay.
    Duarte-Sierra A; Aispuro-Hernández E; Vargas-Arispuro I; Islas-Osuna MA; González-Aguilar GA; Martínez-Téllez MÁ
    J Sci Food Agric; 2016 Apr; 96(6):2018-24. PubMed ID: 26085036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection.
    Aubert Y; Widemann E; Miesch L; Pinot F; Heitz T
    J Exp Bot; 2015 Jul; 66(13):3879-92. PubMed ID: 25903915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola.
    Wang C; Ding Y; Yao J; Zhang Y; Sun Y; Colee J; Mou Z
    Plant J; 2015 Sep; 83(6):1019-33. PubMed ID: 26216741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of miR825 and miR825* as Negative Regulators in
    Nie P; Chen C; Yin Q; Jiang C; Guo J; Zhao H; Niu D
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering microRNA-mediated response to SO2 stress in Arabidopsis thaliana by deep sequencing.
    Li L; Xue M; Yi H
    J Hazard Mater; 2016 Oct; 316():178-85. PubMed ID: 27232729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance.
    Jiang Y; Yu D
    Plant Physiol; 2016 Aug; 171(4):2771-82. PubMed ID: 27268959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spermine and Spermidine Priming against
    Janse van Rensburg HC; Limami AM; Van den Ende W
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33562549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea.
    Hatmi S; Trotel-Aziz P; Villaume S; Couderchet M; Clément C; Aziz A
    J Exp Bot; 2014 Jan; 65(1):75-88. PubMed ID: 24170740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic expression of plant-specific insert of potato aspartic proteases (StAP-PSI) confers enhanced resistance to Botrytis cinerea in Arabidopsis thaliana.
    Frey ME; D'Ippolito S; Pepe A; Daleo GR; Guevara MG
    Phytochemistry; 2018 May; 149():1-11. PubMed ID: 29428248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of arginase in Arabidopsis thaliana influences defence responses against Botrytis cinerea.
    Brauc S; De Vooght E; Claeys M; Geuns JM; Höfte M; Angenon G
    Plant Biol (Stuttg); 2012 Mar; 14 Suppl 1():39-45. PubMed ID: 22188168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection.
    Chassot C; Buchala A; Schoonbeek HJ; Métraux JP; Lamotte O
    Plant J; 2008 Aug; 55(4):555-67. PubMed ID: 18452590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metatranscriptomic Analysis of Multiple Environmental Stresses Identifies RAP2.4 Gene Associated with Arabidopsis Immunity to Botrytis cinerea.
    Sham A; Al-Ashram H; Whitley K; Iratni R; El-Tarabily KA; AbuQamar SF
    Sci Rep; 2019 Nov; 9(1):17010. PubMed ID: 31740741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana.
    Denby KJ; Kumar P; Kliebenstein DJ
    Plant J; 2004 May; 38(3):473-86. PubMed ID: 15086796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA.
    Li X; Yang R; Chen H
    PLoS One; 2018; 13(3):e0193458. PubMed ID: 29513733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection.
    Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T
    Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity.
    Liu S; Ziegler J; Zeier J; Birkenbihl RP; Somssich IE
    Plant Cell Environ; 2017 Oct; 40(10):2189-2206. PubMed ID: 28708934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.