BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 28917532)

  • 21. Tumor-Targeting Glycol Chitosan Nanoparticles for Cancer Heterogeneity.
    Ryu JH; Yoon HY; Sun IC; Kwon IC; Kim K
    Adv Mater; 2020 Dec; 32(51):e2002197. PubMed ID: 33051905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo toxicity evaluation of tumor targeted glycol chitosan nanoparticles in healthy mice: repeated high-dose of glycol chitosan nanoparticles potentially induce cardiotoxicity.
    Chang H; Yhee JY; Jeon S; Shim MK; Yoon HY; Lee S; Kim K
    J Nanobiotechnology; 2023 Mar; 21(1):82. PubMed ID: 36894943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles.
    Park K; Kim JH; Nam YS; Lee S; Nam HY; Kim K; Park JH; Kim IS; Choi K; Kim SY; Kwon IC
    J Control Release; 2007 Oct; 122(3):305-14. PubMed ID: 17643545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rolling circle transcription-based polymeric siRNA nanoparticles for tumor-targeted delivery.
    Lee JH; Ku SH; Kim MJ; Lee SJ; Kim HC; Kim K; Kim SH; Kwon IC
    J Control Release; 2017 Oct; 263():29-38. PubMed ID: 28373128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles.
    Hwang HY; Kim IS; Kwon IC; Kim YH
    J Control Release; 2008 May; 128(1):23-31. PubMed ID: 18374444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
    Kim J; Cho H; Lim DK; Joo MK; Kim K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tumor-Targeting Glycol Chitosan Nanoparticles for Image-Guided Surgery of Rabbit Orthotopic VX2 Lung Cancer.
    On KC; Rho J; Yoon HY; Chang H; Yhee JY; Yoon JS; Jeong SY; Kim HK; Kim K
    Pharmaceutics; 2020 Jul; 12(7):. PubMed ID: 32635231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor targeting strategies for chitosan-based nanoparticles.
    Zhang X; Yang X; Ji J; Liu A; Zhai G
    Colloids Surf B Biointerfaces; 2016 Dec; 148():460-473. PubMed ID: 27665379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modality of tumor endothelial VEGFR2 silencing-mediated improvement in intratumoral distribution of lipid nanoparticles.
    Yamamoto S; Kato A; Sakurai Y; Hada T; Harashima H
    J Control Release; 2017 Apr; 251():1-10. PubMed ID: 28192155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy.
    Kim JH; Kim YS; Park K; Kang E; Lee S; Nam HY; Kim K; Park JH; Chi DY; Park RW; Kim IS; Choi K; Chan Kwon I
    Biomaterials; 2008 Apr; 29(12):1920-30. PubMed ID: 18289669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery.
    Stapleton S; Jaffray D; Milosevic M
    Adv Drug Deliv Rev; 2017 Jan; 109():119-130. PubMed ID: 27262923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tumor targeting and microenvironment-responsive nanoparticles for gene delivery.
    Huang S; Shao K; Kuang Y; Liu Y; Li J; An S; Guo Y; Ma H; He X; Jiang C
    Biomaterials; 2013 Jul; 34(21):5294-302. PubMed ID: 23562171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice.
    Lee SJ; Park K; Oh YK; Kwon SH; Her S; Kim IS; Choi K; Lee SJ; Kim H; Lee SG; Kim K; Kwon IC
    Biomaterials; 2009 May; 30(15):2929-39. PubMed ID: 19254811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis.
    Huang S; Shao K; Liu Y; Kuang Y; Li J; An S; Guo Y; Ma H; Jiang C
    ACS Nano; 2013 Mar; 7(3):2860-71. PubMed ID: 23451830
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy.
    Lee SJ; Koo H; Jeong H; Huh MS; Choi Y; Jeong SY; Byun Y; Choi K; Kim K; Kwon IC
    J Control Release; 2011 May; 152(1):21-9. PubMed ID: 21457740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting endothelial permeability in the EPR effect.
    Lahooti B; Akwii RG; Zahra FT; Sajib MS; Lamprou M; Alobaida A; Lionakis MS; Mattheolabakis G; Mikelis CM
    J Control Release; 2023 Sep; 361():212-235. PubMed ID: 37517543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Delivery of siRNA targeting tumor metabolism using non-covalent PEGylated chitosan nanoparticles: Identification of an optimal combination of ligand structure, linker and grafting method.
    Corbet C; Ragelle H; Pourcelle V; Vanvarenberg K; Marchand-Brynaert J; Préat V; Feron O
    J Control Release; 2016 Feb; 223():53-63. PubMed ID: 26699426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo tumor accumulation of nanoparticles formed by ionic interaction of glycol chitosan and fatty acid ethyl ester.
    Kim J; Lee CM; Jeong HJ; Lee KY
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1160-6. PubMed ID: 21456154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.