BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28917580)

  • 1. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.
    Naghibi Beidokhti H; Janssen D; van de Groes S; Hazrati J; Van den Boogaard T; Verdonschot N
    J Biomech; 2017 Dec; 65():1-11. PubMed ID: 28917580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach.
    Mommersteeg TJ; Blankevoort L; Huiskes R; Kooloos JG; Kauer JM
    J Biomech; 1996 Feb; 29(2):151-60. PubMed ID: 8849808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity.
    Harris MD; Cyr AJ; Ali AA; Fitzpatrick CK; Rullkoetter PJ; Maletsky LP; Shelburne KB
    J Biomech Eng; 2016 Aug; 138(8):0810041-8. PubMed ID: 27306137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
    Gardiner JC; Weiss JA
    J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of robotic technology for diathrodial joint research.
    Woo SL; Debski RE; Wong EK; Yagi M; Tarinelli D
    J Sci Med Sport; 1999 Dec; 2(4):283-97. PubMed ID: 10710007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A global verification study of a quasi-static knee model with multi-bundle ligaments.
    Mommersteeg TJ; Huiskes R; Blankevoort L; Kooloos JG; Kauer JM; Maathuis PG
    J Biomech; 1996 Dec; 29(12):1659-64. PubMed ID: 8945669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of joint load on the stiffness and laxity of ligament-deficient knees. An in vitro study of the anterior cruciate and medial collateral ligaments.
    Shoemaker SC; Markolf KL
    J Bone Joint Surg Am; 1985 Jan; 67(1):136-46. PubMed ID: 3968092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and evaluation of a new procedure for subject-specific tensioning of finite element knee ligaments.
    Lahkar BK; Rohan PY; Pillet H; Thoreux P; Skalli W
    Comput Methods Biomech Biomed Engin; 2021 Aug; 24(11):1195-1205. PubMed ID: 33427509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A validated three-dimensional computational model of a human knee joint.
    Li G; Gil J; Kanamori A; Woo SL
    J Biomech Eng; 1999 Dec; 121(6):657-62. PubMed ID: 10633268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligament-bone interaction in a three-dimensional model of the knee.
    Blankevoort L; Huiskes R
    J Biomech Eng; 1991 Aug; 113(3):263-9. PubMed ID: 1921352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration of Holzapfel-Gasser-Ogden collateral ligament properties in a hybrid post-arthroplasty knee joint model for laxity testing.
    Milakovic L; Dandois F; Fehervary H; Scheys L
    Comput Methods Biomech Biomed Engin; 2023 Sep; ():1-11. PubMed ID: 37668078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of subject-specific pediatric multibody knee kinematic models with ligamentous constraints.
    Barzan M; Modenese L; Carty CP; Maine S; Stockton CA; Sancisi N; Lewis A; Grant J; Lloyd DG; Brito da Luz S
    J Biomech; 2019 Aug; 93():194-203. PubMed ID: 31331662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Ligament Properties on Tibiofemoral Mechanics in Walking.
    Smith CR; Lenhart RL; Kaiser J; Vignos MF; Thelen DG
    J Knee Surg; 2016 Feb; 29(2):99-106. PubMed ID: 26408997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles.
    Li J; Lu Y; Miller SC; Jin Z; Hua X
    J Biomech; 2019 Sep; 94():230-234. PubMed ID: 31421809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Articular contact in a three-dimensional model of the knee.
    Blankevoort L; Kuiper JH; Huiskes R; Grootenboer HJ
    J Biomech; 1991; 24(11):1019-31. PubMed ID: 1761580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanics of changes in ACL and PCL material properties or prestrains in flexion under muscle force-implications in ligament reconstruction.
    Mesfar W; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):201-9. PubMed ID: 17132528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study.
    Wan C; Hao Z; Wen S
    J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knee model sensitivity to cruciate ligaments parameters: a stability simulation study for a living subject.
    Bertozzi L; Stagni R; Fantozzi S; Cappello A
    J Biomech; 2007; 40 Suppl 1():S38-44. PubMed ID: 17434519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics.
    Halloran JP; Easley SK; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2005 Oct; 127(5):813-8. PubMed ID: 16248311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational model-based probabilistic analysis of in vivo material properties for ligament stiffness using the laxity test and computed tomography.
    Kang KT; Kim SH; Son J; Lee YH; Chun HJ
    J Mater Sci Mater Med; 2016 Dec; 27(12):183. PubMed ID: 27787809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.