These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 28917737)
41. Selective capturing of phenolic derivative by a binary metal oxide microcubes for its detection. Rahman MM Sci Rep; 2019 Dec; 9(1):19234. PubMed ID: 31848430 [TBL] [Abstract][Full Text] [Related]
42. A novel way for detection of antiparkinsonism drug entacapone via electrodeposition of silver nanoparticles/functionalized multi-walled carbon nanotubes as an amperometric sensor. Baghayeri M; Tehrani MB; Amiri A; Maleki B; Farhadi S Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():77-83. PubMed ID: 27207040 [TBL] [Abstract][Full Text] [Related]
43. Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses. Rahman MM; Hussain MM; Asiri AM PLoS One; 2017; 12(9):e0177817. PubMed ID: 28938019 [TBL] [Abstract][Full Text] [Related]
44. Synthesis of PtAu bimetallic nanoparticles on graphene-carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Lu D; Zhang Y; Lin S; Wang L; Wang C Talanta; 2013 Aug; 112():111-6. PubMed ID: 23708545 [TBL] [Abstract][Full Text] [Related]
45. Novel synthesis and characterization of pristine Cu nanoparticles for the non-enzymatic glucose biosensor. Dayakar T; Rao KV; Bikshalu K; Rajendar V; Park SH J Mater Sci Mater Med; 2017 Jul; 28(7):109. PubMed ID: 28540582 [TBL] [Abstract][Full Text] [Related]
46. An enzyme free simultaneous detection of γ-amino-butyric acid and testosterone based on copper oxide nanoparticles. Hussain MM; Asiri AM; Uddin J; Rahman MM RSC Adv; 2021 Jun; 11(34):20794-20805. PubMed ID: 35479338 [TBL] [Abstract][Full Text] [Related]
47. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia. Emmanuel R; Karuppiah C; Chen SM; Palanisamy S; Padmavathy S; Prakash P J Hazard Mater; 2014 Aug; 279():117-24. PubMed ID: 25048622 [TBL] [Abstract][Full Text] [Related]
48. Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles. Kanchana P; Sekar C Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():58-65. PubMed ID: 25194322 [TBL] [Abstract][Full Text] [Related]
49. Fabrication and Characterizations of Ethanol Sensor Based on CuO Nanoparticles. Al-Hadeethi Y; Umar A; Kumar R; Al-Heniti SH; Raffah BM J Nanosci Nanotechnol; 2018 Apr; 18(4):2892-2897. PubMed ID: 29442970 [TBL] [Abstract][Full Text] [Related]
50. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects. Yang J; Liang X; Cui L; Liu H; Xie J; Liu W Biosens Bioelectron; 2016 Jun; 80():171-174. PubMed ID: 26827147 [TBL] [Abstract][Full Text] [Related]
51. Ultra-sensitive film sensor based on Al2O3-Au nanoparticles supported on PDDA-functionalized graphene for the determination of acetaminophen. Li J; Sun W; Wang X; Duan H; Wang Y; Sun Y; Ding C; Luo C Anal Bioanal Chem; 2016 Aug; 408(20):5567-76. PubMed ID: 27255103 [TBL] [Abstract][Full Text] [Related]
52. Tetraphenylporphyrin Decorated Bi Pal S; Sarkar A; Satra J; Mondal P; Ray P; Srivastava DN; Adhikary B; Show B Inorg Chem; 2022 Nov; 61(44):17402-17418. PubMed ID: 36287011 [TBL] [Abstract][Full Text] [Related]
53. Sensitive analysis of simazine based on platinum nanoparticles on polyoxometalate/multi-walled carbon nanotubes. Ertan B; Eren T; Ermiş İ; Saral H; Atar N; Yola ML J Colloid Interface Sci; 2016 May; 470():14-21. PubMed ID: 26928060 [TBL] [Abstract][Full Text] [Related]
54. Development of Methanol Sensor Based on Sol-Gel Drop-Coating Co Rahman MM; Ahmed J; Asiri AM; Alfaifi SYM; Marwani HM Gels; 2021 Nov; 7(4):. PubMed ID: 34940295 [TBL] [Abstract][Full Text] [Related]
55. Electrochemical determination of olmesartan medoxomil using hydrothermally prepared nanoparticles composed SnO2-Co3O4 nanocubes in tablet dosage forms. Rahman MM; Khan SB; Faisal M; Rub MA; Al-Youbi AO; Asiri AM Talanta; 2012 Sep; 99():924-31. PubMed ID: 22967644 [TBL] [Abstract][Full Text] [Related]
56. Fabrication of 1,4-dioxane sensor based on microwave assisted PAni-SiO Karim MR; Alam MM; Aijaz MO; Asiri AM; Dar MA; Rahman MM Talanta; 2019 Feb; 193():64-69. PubMed ID: 30368299 [TBL] [Abstract][Full Text] [Related]
57. Nonenzymatic Electrochemical Detection of 2,4,6-Trichlorophenol Using CuO/Nafion/GCE: A Practical Sensor for Environmental Toxicants. Buledi JA; Solangi AR; Memon SQ; Haider SI; Ameen S; Khand NH; Bhatti A; Qambrani N Langmuir; 2021 Mar; 37(10):3214-3222. PubMed ID: 33657802 [TBL] [Abstract][Full Text] [Related]
58. In situ synthesis of ceria nanoparticles in the ordered mesoporous carbon as a novel electrochemical sensor for the determination of hydrazine. Liu Y; Li Y; He X Anal Chim Acta; 2014 Mar; 819():26-33. PubMed ID: 24636407 [TBL] [Abstract][Full Text] [Related]
59. A NiO-nanostructure-based electrochemical sensor functionalized with supramolecular structures for the ultra-sensitive detection of the endocrine disruptor bisphenol S in an aquatic environment. Hyder A; Ali A; Buledi JA; Memon R; Al-Anzi BS; Memon AA; Kazi M; Solangi AR; Yang J; Thebo KH Phys Chem Chem Phys; 2024 Apr; 26(14):10940-10950. PubMed ID: 38526327 [TBL] [Abstract][Full Text] [Related]
60. Detection of toxic choline based on Mn Rahman MM; Alam MM; Asiri AM RSC Adv; 2019 Oct; 9(60):35146-35157. PubMed ID: 35530714 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]