These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 28917782)
1. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory I. The linear relationship of lgk' vs. lg[H Wang F; Yang F; Tian Y; Liu J; Shen J; Bai Q Talanta; 2018 Jan; 176():499-508. PubMed ID: 28917782 [TBL] [Abstract][Full Text] [Related]
2. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory II. HILIC/RPLC dual-retention mechanism of solutes in hydrophilic interaction chromatography over the entire range of water concentration in mobile phase. Wang F; Yang F; Liu J; Bai Q Talanta; 2023 Dec; 265():124858. PubMed ID: 37385194 [TBL] [Abstract][Full Text] [Related]
3. [Study on the rule of solvent strength in reversed-phase liquid chromatography]. Zhang WP; Guo H; Gao J; Geng XD Se Pu; 2000 Nov; 18(6):475-9. PubMed ID: 12541730 [TBL] [Abstract][Full Text] [Related]
4. Retention models and interaction mechanisms of acetone and other carbonyl-containing molecules with amylose tris[(S)-α-methylbenzylcarbamate] sorbent. Tsui HW; Hwang MY; Ling L; Franses EI; Wang NH J Chromatogr A; 2013 Mar; 1279():36-48. PubMed ID: 23374367 [TBL] [Abstract][Full Text] [Related]
5. [Study on quantitative relationship between retention parameters of solutes in reversed-phase liquid chromatography]. Guo H; Zhang YJ; Gao J; Geng XD Se Pu; 2001 Jan; 19(1):1-4. PubMed ID: 12541835 [TBL] [Abstract][Full Text] [Related]
6. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode. Bicker W; Wu J; Yeman H; Albert K; Lindner W J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765 [TBL] [Abstract][Full Text] [Related]
7. Investigation and prediction of retention characteristics of imidazoline and serotonin receptor ligands and their related compounds on mixed-mode stationary phase. Obradović D; Oljačić S; Nikolić K; Agbaba D J Chromatogr A; 2019 Jan; 1585():92-104. PubMed ID: 30553503 [TBL] [Abstract][Full Text] [Related]
8. Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: modeling and implications for the adsorption mechanism. Tsui HW; Franses EI; Wang NH J Chromatogr A; 2014 Feb; 1328():52-65. PubMed ID: 24444802 [TBL] [Abstract][Full Text] [Related]
9. Water uptake on polar stationary phases under conditions for hydrophilic interaction chromatography and its relation to solute retention. Dinh NP; Jonsson T; Irgum K J Chromatogr A; 2013 Dec; 1320():33-47. PubMed ID: 24200388 [TBL] [Abstract][Full Text] [Related]
10. Hydrophilic-subtraction model for the characterization and comparison of hydrophilic interaction liquid chromatography columns. Wang J; Guo Z; Shen A; Yu L; Xiao Y; Xue X; Zhang X; Liang X J Chromatogr A; 2015 Jun; 1398():29-46. PubMed ID: 25935798 [TBL] [Abstract][Full Text] [Related]
11. [Thermodynamic characteristics of stoichiometric displacement linear parameter log I in reversed-phase liquid chromatography]. Bai Q; Geng XD Se Pu; 2000 May; 18(3):189-93. PubMed ID: 12541552 [TBL] [Abstract][Full Text] [Related]
12. The comparison of retention behaviour of imidazoline and serotonin receptor ligands in non-aqueous hydrophilic interaction chromatography and supercritical fluid chromatography. Obradović D; Stavrianidi AN; Ustinovich KB; Parenago OO; Shpigun OA; Agbaba D J Chromatogr A; 2019 Oct; 1603():371-379. PubMed ID: 31060781 [TBL] [Abstract][Full Text] [Related]
13. Elucidation of retention behaviors in reversed-phase liquid chromatography as a function of mobile phase composition. Tsui HW; Kuo CH; Huang YC J Chromatogr A; 2019 Jun; 1595():127-135. PubMed ID: 30837162 [TBL] [Abstract][Full Text] [Related]
14. Practical examination of flow rate effects and influence of the stationary phase water layer on peak shape and retention in hydrophilic interaction liquid chromatography. McCalley DV J Chromatogr A; 2024 Jan; 1715():464608. PubMed ID: 38194863 [TBL] [Abstract][Full Text] [Related]
15. Determination of the fractions of the stoichiometric displacement parameter Z. Wang Y; Geng XD Se Pu; 2002 Nov; 20(6):481-5. PubMed ID: 12682992 [TBL] [Abstract][Full Text] [Related]
16. Retention mechanism assessment and method development for the analysis of iohexol and its related compounds in hydrophilic interaction liquid chromatography. Jovanović M; Rakić T; Jančić-Stojanović B; Ivanović D; Medenica M Anal Bioanal Chem; 2014 Jul; 406(17):4217-32. PubMed ID: 24752695 [TBL] [Abstract][Full Text] [Related]
17. A revisit to the retention mechanism of hydrophilic interaction liquid chromatography using model organic compounds. Karatapanis AE; Fiamegos YC; Stalikas CD J Chromatogr A; 2011 May; 1218(20):2871-9. PubMed ID: 21439572 [TBL] [Abstract][Full Text] [Related]
18. Using the fundamentals of adsorption to understand peak distortion due to strong solvent effect in hydrophilic interaction chromatography. Gritti F; Sehajpal J; Fairchild J J Chromatogr A; 2017 Mar; 1489():95-106. PubMed ID: 28193468 [TBL] [Abstract][Full Text] [Related]
19. Performance of charged aerosol detection with hydrophilic interaction chromatography. Russell JJ; Heaton JC; Underwood T; Boughtflower R; McCalley DV J Chromatogr A; 2015 Jul; 1405():72-84. PubMed ID: 26091786 [TBL] [Abstract][Full Text] [Related]
20. Hydrophilic interaction liquid chromatography columns classification by effect of solvation and chemometric methods. Noga S; Bocian S; Buszewski B J Chromatogr A; 2013 Feb; 1278():89-97. PubMed ID: 23351397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]