These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28917786)

  • 1. Chemometric compositional analysis of phenolic compounds in fermenting samples and wines using different infrared spectroscopy techniques.
    Aleixandre-Tudo JL; Nieuwoudt H; Aleixandre JL; du Toit W
    Talanta; 2018 Jan; 176():526-536. PubMed ID: 28917786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of phenolic compounds during red winemaking using FT-MIR spectroscopy and PLS-regression.
    Fragoso S; Aceña L; Guasch J; Mestres M; Busto O
    J Agric Food Chem; 2011 Oct; 59(20):10795-802. PubMed ID: 21905733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid method for the discrimination of red wine cultivars based on mid-infrared spectroscopy of phenolic wine extracts.
    Edelmann A; Diewok J; Schuster KC; Lendl B
    J Agric Food Chem; 2001 Mar; 49(3):1139-45. PubMed ID: 11312825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of different measurement techniques and variable selection methods for FT-MIR in wine analysis.
    Friedel M; Patz CD; Dietrich H
    Food Chem; 2013 Dec; 141(4):4200-7. PubMed ID: 23993606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples.
    Cozzolino D
    Molecules; 2015 Jan; 20(1):726-37. PubMed ID: 25574817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of visible and mid-infrared spectra for the prediction of chemical parameters of wines.
    Sen I; Ozturk B; Tokatli F; Ozen B
    Talanta; 2016 Dec; 161():130-137. PubMed ID: 27769388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectrometry.
    Fernandez K; Agosin E
    J Agric Food Chem; 2007 Sep; 55(18):7294-300. PubMed ID: 17696445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct quantification of red wine phenolics using fluorescence spectroscopy with chemometrics.
    Santos ID; Bosman G; Aleixandre-Tudo JL; du Toit W
    Talanta; 2022 Jan; 236():122857. PubMed ID: 34635241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of FT-MIR spectroscopy for fast control of red grape phenolic ripening.
    Fragoso S; Aceña L; Guasch J; Busto O; Mestres M
    J Agric Food Chem; 2011 Mar; 59(6):2175-83. PubMed ID: 21329398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of phenolic compounds in Cabernet Sauvignon wines made in traditional and Ganimede fermenters.
    Bai B; He F; Yang L; Chen F; Reeves MJ; Li J
    Food Chem; 2013 Dec; 141(4):3984-92. PubMed ID: 23993575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards on-line monitoring of phenolic content in red wine grapes: A feasibility study.
    Aleixandre-Tudo JL; Nieuwoudt H; du Toit W
    Food Chem; 2019 Jan; 270():322-331. PubMed ID: 30174054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of wine tannin classification using Fourier transform mid-infrared spectrometry and sensory analysis.
    Fernández K; Labarca X; Bordeu E; Guesalaga A; Agosin E
    Appl Spectrosc; 2007 Nov; 61(11):1163-7. PubMed ID: 18028694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity.
    Silva SD; Feliciano RP; Boas LV; Bronze MR
    Food Chem; 2014 May; 150():489-93. PubMed ID: 24360480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of pectolytic enzyme addition and prefermentative mash heating during the winemaking process on the phenolic composition of Okuzgozu red wine.
    Borazan AA; Bozan B
    Food Chem; 2013 May; 138(1):389-95. PubMed ID: 23265503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines.
    Aleixandre-Tudo JL; Buica A; Nieuwoudt H; Aleixandre JL; du Toit W
    J Agric Food Chem; 2017 May; 65(20):4009-4026. PubMed ID: 28475326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: prediction of antioxidant activities and classification of wines using artificial neural networks.
    Hosu A; Cristea VM; Cimpoiu C
    Food Chem; 2014 May; 150():113-8. PubMed ID: 24360427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenolic content and antioxidant activity of Primitivo wine: comparison among winemaking technologies.
    Baiano A; Terracone C; Gambacorta G; La Notte E
    J Food Sci; 2009 Apr; 74(3):C258-67. PubMed ID: 19397711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between ATR-IR, Raman, concatenated ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total phenolic content of Chinese rice wine.
    Wu Z; Xu E; Long J; Pan X; Xu X; Jin Z; Jiao A
    Food Chem; 2016 Mar; 194():671-9. PubMed ID: 26471606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines.
    Cocciardi RA; Ismail AA; Sedman J
    J Agric Food Chem; 2005 Apr; 53(8):2803-9. PubMed ID: 15826022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.