These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28917794)

  • 1. Patterned polycaprolactone-filled glass microfiber microfluidic devices for total protein content analysis.
    Bandara GC; Heist CA; Remcho VT
    Talanta; 2018 Jan; 176():589-594. PubMed ID: 28917794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatographic Separation and Visual Detection on Wicking Microfluidic Devices: Quantitation of Cu
    Bandara GC; Heist CA; Remcho VT
    Anal Chem; 2018 Feb; 90(4):2594-2600. PubMed ID: 29333859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wicking microfluidic approach to separate blood plasma from whole blood to facilitate downstream assays.
    Bandara GC; Unitan LJ; Kremer MH; Shellhammer OT; Bracha S; Remcho VT
    Anal Bioanal Chem; 2021 Jul; 413(17):4511-4520. PubMed ID: 34046699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.
    Wu P; Zhang C
    Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis.
    de Oliveira RAG; Camargo F; Pesquero NC; Faria RC
    Anal Chim Acta; 2017 Mar; 957():40-46. PubMed ID: 28107832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of paper-based microarray and time-of-flight secondary ion mass spectrometry (ToF-SIMS) for parallel detection and quantification of molecules in multiple samples automatically.
    Chu KJ; Chen PC; You YW; Chang HY; Kao WL; Chu YH; Wu CY; Shyue JJ
    Anal Chim Acta; 2018 Apr; 1005():61-69. PubMed ID: 29389320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing highly structured polycaprolactone fibers using microfluidics.
    Sharifi F; Kurteshi D; Hashemi N
    J Mech Behav Biomed Mater; 2016 Aug; 61():530-540. PubMed ID: 27136089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel combination of quick response code and microfluidic paper-based analytical devices for rapid and quantitative detection.
    Wang T; Xu G; Wu W; Wang X; Chen X; Zhou S; You F
    Biomed Microdevices; 2018 Sep; 20(3):79. PubMed ID: 30187186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D microfluidic cloth-based analytical devices on a single piece of cloth by one-step laser hydrophilicity modification.
    Wu D; Ding Y; Zhang Y; Pan D; Li J; Hu Y; Xu B; Chu J
    Lab Chip; 2021 Dec; 21(24):4805-4813. PubMed ID: 34734609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method.
    Thompson BL; Ouyang Y; Duarte GR; Carrilho E; Krauss ST; Landers JP
    Nat Protoc; 2015 Jun; 10(6):875-86. PubMed ID: 25974096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in paper-analytical methods for pharmaceutical analysis.
    Sharma N; Barstis T; Giri B
    Eur J Pharm Sci; 2018 Jan; 111():46-56. PubMed ID: 28943443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryonic body culturing in an all-glass microfluidic device with laser-processed 4 μm thick ultra-thin glass sheet filter.
    Yalikun Y; Tanaka N; Hosokawa Y; Iino T; Tanaka Y
    Biomed Microdevices; 2017 Sep; 19(4):85. PubMed ID: 28929304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single microfluidic chip with dual surface properties for protein drug delivery.
    Bokharaei M; Saatchi K; Häfeli UO
    Int J Pharm; 2017 Apr; 521(1-2):84-91. PubMed ID: 28213275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication improvements for thermoset polyester (TPE) microfluidic devices.
    Fiorini GS; Yim M; Jeffries GD; Schiro PG; Mutch SA; Lorenz RM; Chiu DT
    Lab Chip; 2007 Jul; 7(7):923-6. PubMed ID: 17594014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Wick-Like Paper-Based Microfluidic Device for 3D Cell Culture and Anti-Cancer Drugs Screening.
    Fu SX; Zuo P; Ye BC
    Biotechnol J; 2021 Feb; 16(2):e2000126. PubMed ID: 33460221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.