BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 28917798)

  • 1. Perception of olive oils sensory defects using a potentiometric taste device.
    Veloso ACA; Silva LM; Rodrigues N; Rebello LPG; Dias LG; Pereira JA; Peres AM
    Talanta; 2018 Jan; 176():610-618. PubMed ID: 28917798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory intensity assessment of olive oils using an electronic tongue.
    Veloso AC; Dias LG; Rodrigues N; Pereira JA; Peres AM
    Talanta; 2016 Jan; 146():585-93. PubMed ID: 26695307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory classification of table olives using an electronic tongue: Analysis of aqueous pastes and brines.
    Marx Í; Rodrigues N; Dias LG; Veloso AC; Pereira JA; Drunkler DA; Peres AM
    Talanta; 2017 Jan; 162():98-106. PubMed ID: 27837890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of an electronic tongue as a single-run tool for olive oils' physicochemical and sensory simultaneous assessment.
    Rodrigues N; Marx ÍMG; Casal S; Dias LG; Veloso ACA; Pereira JA; Peres AM
    Talanta; 2019 May; 197():363-373. PubMed ID: 30771949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of olive oil sensory defects by multivariate analysis of mid infrared spectra.
    Borràs E; Mestres M; Aceña L; Busto O; Ferré J; Boqué R; Calvo A
    Food Chem; 2015 Nov; 187():197-203. PubMed ID: 25977016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olive oil sensory defects classification with data fusion of instrumental techniques and multivariate analysis (PLS-DA).
    Borràs E; Ferré J; Boqué R; Mestres M; Aceña L; Calvo A; Busto O
    Food Chem; 2016 Jul; 203():314-322. PubMed ID: 26948620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.
    Dias LG; Fernandes A; Veloso AC; Machado AA; Pereira JA; Peres AM
    Food Chem; 2014 Oct; 160():321-9. PubMed ID: 24799245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophenolic Compounds Influence the In-Mouth Perceived Intensity of Virgin Olive Oil Flavours and Off-Flavours.
    Genovese A; Mondola F; Paduano A; Sacchi R
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulations of Rancid and Winey-Vinegary Artificial Olfactory Reference Materials (AORMs) for Virgin Olive Oil Sensory Evaluation.
    Aparicio-Ruiz R; Barbieri S; Gallina Toschi T; García-González DL
    Foods; 2020 Dec; 9(12):. PubMed ID: 33333860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Usefulness of the direct coupling headspace-mass spectrometry for sensory quality characterization of virgin olive oil samples.
    López-Feria S; Cárdenas S; García-Mesa JA; Valcárcel M
    Anal Chim Acta; 2007 Feb; 583(2):411-7. PubMed ID: 17386574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach.
    Buratti S; Malegori C; Benedetti S; Oliveri P; Giovanelli G
    Talanta; 2018 May; 182():131-141. PubMed ID: 29501132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory properties of Californian and imported extra virgin olive oils.
    Delgado C; Guinard JX
    J Food Sci; 2011 Apr; 76(3):S170-6. PubMed ID: 21535856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory attribute preservation in extra virgin olive oil with addition of oregano essential oil as natural antioxidant.
    Asensio CM; Nepote V; Grosso NR
    J Food Sci; 2012 Sep; 77(9):S294-301. PubMed ID: 22897359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of extra virgin olive oil adulteration with lampante olive oil and refined olive oil using nuclear magnetic resonance spectroscopy and multivariate statistical analysis.
    Fragaki G; Spyros A; Siragakis G; Salivaras E; Dais P
    J Agric Food Chem; 2005 Apr; 53(8):2810-6. PubMed ID: 15826023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a lab-made electronic nose for extra virgin olive oils commercial classification according to the perceived fruitiness intensity.
    Teixeira GG; Dias LG; Rodrigues N; Marx ÍMG; Veloso ACA; Pereira JA; Peres AM
    Talanta; 2021 May; 226():122122. PubMed ID: 33676677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Electronic Nose as a Non-Destructive Analytical Tool to Identify the Geographical Origin of Portuguese Olive Oils from Two Adjacent Regions.
    Rodrigues N; Ferreiro N; Veloso ACA; Pereira JA; Peres AM
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of SPME-GCMS method for the analysis of virgin olive oil volatiles responsible for sensory defects.
    Romero I; García-González DL; Aparicio-Ruiz R; Morales MT
    Talanta; 2015 Mar; 134():394-401. PubMed ID: 25618685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How 'ground-picked' olive fruits affect virgin olive oil ethanol content, ethyl esters and quality.
    Beltran G; Sánchez R; Sánchez-Ortiz A; Aguilera MP; Bejaoui MA; Jimenez A
    J Sci Food Agric; 2016 Aug; 96(11):3801-6. PubMed ID: 26679044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of rancid defect in virgin olive oil by the electronic nose.
    Aparicio R; Rocha SM; Delgadillo I; Morales MT
    J Agric Food Chem; 2000 Mar; 48(3):853-60. PubMed ID: 10725163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics.
    Quintanilla-Casas B; Marin M; Guardiola F; García-González DL; Barbieri S; Bendini A; Gallina Toschi T; Vichi S; Tres A
    Foods; 2020 Oct; 9(10):. PubMed ID: 33096623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.