BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28917886)

  • 1. Hydrogen bonds and twist in cellulose microfibrils.
    Kannam SK; Oehme DP; Doblin MS; Gidley MJ; Bacic A; Downton MT
    Carbohydr Polym; 2017 Nov; 175():433-439. PubMed ID: 28917886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling cellulose microfibrils: a twisted tale.
    Hadden JA; French AD; Woods RJ
    Biopolymers; 2013 Oct; 99(10):746-56. PubMed ID: 23681971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular origins of twist in cellulose I-beta.
    Bu L; Himmel ME; Crowley MF
    Carbohydr Polym; 2015 Jul; 125():146-52. PubMed ID: 25857969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis.
    Zhao Z; Shklyaev OE; Nili A; Mohamed MN; Kubicki JD; Crespi VH; Zhong L
    J Phys Chem A; 2013 Mar; 117(12):2580-9. PubMed ID: 23418823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic twist in Iβ cellulose microfibrils by tight-binding objective boundary calculations.
    Dumitrică T
    Carbohydr Polym; 2020 Feb; 230():115624. PubMed ID: 31887879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Insight into the Self-Assembly Process of Cellulose Iβ Microfibril.
    Thu TTM; Moreira RA; Weber SAL; Poma AB
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations.
    Oehme DP; Downton MT; Doblin MS; Wagner J; Gidley MJ; Bacic A
    Plant Physiol; 2015 May; 168(1):3-17. PubMed ID: 25786828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose Iβ.
    Hadden JA; French AD; Woods RJ
    Cellulose (Lond); 2014 Apr; 21(2):879-884. PubMed ID: 24729665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of internal molecular torque results in twists of Glaucocystis cellulose nanofibers.
    Ogawa Y
    Carbohydr Polym; 2021 Jan; 251():117102. PubMed ID: 33142640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Martini 3 Model of Cellulose Microfibrils: On the Route to Capture Large Conformational Changes of Polysaccharides.
    Moreira RA; Weber SAL; Poma AB
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature behavior of cellulose I.
    Matthews JF; Bergenstråhle M; Beckham GT; Himmel ME; Nimlos MR; Brady JW; Crowley MF
    J Phys Chem B; 2011 Mar; 115(10):2155-66. PubMed ID: 21338135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils.
    Gross AS; Chu JW
    J Phys Chem B; 2010 Oct; 114(42):13333-41. PubMed ID: 20883004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of chiral interactions in cellulose supra-molecular microfibrils.
    Khandelwal M; Windle A
    Carbohydr Polym; 2014 Jun; 106():128-31. PubMed ID: 24721059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks.
    Shen T; Gnanakaran S
    Biophys J; 2009 Apr; 96(8):3032-40. PubMed ID: 19383449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra.
    Lee CM; Kubicki JD; Fan B; Zhong L; Jarvis MC; Kim SH
    J Phys Chem B; 2015 Dec; 119(49):15138-49. PubMed ID: 26615832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of solvated crystal models of cellulose I(alpha) and III(I).
    Yui T; Hayashi S
    Biomacromolecules; 2007 Mar; 8(3):817-24. PubMed ID: 17286383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations on parallel and antiparallel C.G*G triplexes.
    Kiran MR; Bansal M
    J Biomol Struct Dyn; 1998 Dec; 16(3):511-26. PubMed ID: 10052610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lockhart with a twist: Modelling cellulose microfibril deposition and reorientation reveals twisting plant cell growth mechanisms.
    Chakraborty J; Luo J; Dyson RJ
    J Theor Biol; 2021 Sep; 525():110736. PubMed ID: 33915144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degree of polymerization of glucan chains shapes the structure fluctuations and melting thermodynamics of a cellulose microfibril.
    Chang R; Gross AS; Chu JW
    J Phys Chem B; 2012 Jul; 116(28):8074-83. PubMed ID: 22725724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of solvation and gelation behavior of methylcellulose using atomistic molecular dynamics simulations.
    Huang W; Dalal IS; Larson RG
    J Phys Chem B; 2014 Dec; 118(48):13992-4008. PubMed ID: 25390072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.