BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 28917917)

  • 1. Characterization of structural cell wall polysaccharides in cattail (Typha latifolia): Evaluation as potential biofuel feedstock.
    Rebaque D; Martínez-Rubio R; Fornalé S; García-Angulo P; Alonso-Simón A; Álvarez JM; Caparros-Ruiz D; Acebes JL; Encina A
    Carbohydr Polym; 2017 Nov; 175():679-688. PubMed ID: 28917917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus.
    Li F; Ren S; Zhang W; Xu Z; Xie G; Chen Y; Tu Y; Li Q; Zhou S; Li Y; Tu F; Liu L; Wang Y; Jiang J; Qin J; Li S; Li Q; Jing HC; Zhou F; Gutterson N; Peng L
    Bioresour Technol; 2013 Feb; 130():629-37. PubMed ID: 23334020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production.
    Hallac BB; Sannigrahi P; Pu Y; Ray M; Murphy RJ; Ragauskas AJ
    J Agric Food Chem; 2009 Feb; 57(4):1275-81. PubMed ID: 19170631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize.
    Voorend W; Nelissen H; Vanholme R; De Vliegher A; Van Breusegem F; Boerjan W; Roldán-Ruiz I; Muylle H; Inzé D
    Plant Biotechnol J; 2016 Mar; 14(3):997-1007. PubMed ID: 26903034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.
    Li F; Zhang M; Guo K; Hu Z; Zhang R; Feng Y; Yi X; Zou W; Wang L; Wu C; Tian J; Lu T; Xie G; Peng L
    Plant Biotechnol J; 2015 May; 13(4):514-25. PubMed ID: 25418842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Analysis of Cellulose Synthase
    Mazarei M; Baxter HL; Li M; Biswal AK; Kim K; Meng X; Pu Y; Wuddineh WA; Zhang JY; Turner GB; Sykes RW; Davis MF; Udvardi MK; Wang ZY; Mohnen D; Ragauskas AJ; Labbé N; Stewart CN
    Front Plant Sci; 2018; 9():1114. PubMed ID: 30127793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective.
    Byrt CS; Grof CP; Furbank RT
    J Integr Plant Biol; 2011 Feb; 53(2):120-35. PubMed ID: 21205189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Populus as a lignocellulosic feedstock for bioethanol.
    Porth I; El-Kassaby YA
    Biotechnol J; 2015 Apr; 10(4):510-24. PubMed ID: 25676392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignification of Sheepgrass Internodes at Different Developmental Stages and Associated Alteration of Cell Wall Saccharification Efficiency.
    Wang J; Ma L; Shen Z; Sun D; Zhong P; Bai Z; Zhang H; Cao Y; Bao Y; Fu C
    Front Plant Sci; 2017; 8():414. PubMed ID: 28396679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-year field analysis of reduced recalcitrance transgenic switchgrass.
    Baxter HL; Mazarei M; Labbe N; Kline LM; Cheng Q; Windham MT; Mann DG; Fu C; Ziebell A; Sykes RW; Rodriguez M; Davis MF; Mielenz JR; Dixon RA; Wang ZY; Stewart CN
    Plant Biotechnol J; 2014 Sep; 12(7):914-24. PubMed ID: 24751162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20224547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass.
    Jung JH; Fouad WM; Vermerris W; Gallo M; Altpeter F
    Plant Biotechnol J; 2012 Dec; 10(9):1067-76. PubMed ID: 22924974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants.
    Wu Z; Zhang M; Wang L; Tu Y; Zhang J; Xie G; Zou W; Li F; Guo K; Li Q; Gao C; Peng L
    Biotechnol Biofuels; 2013 Dec; 6(1):183. PubMed ID: 24341349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse.
    Li M; Feng S; Wu L; Li Y; Fan C; Zhang R; Zou W; Tu Y; Jing HC; Li S; Peng L
    Bioresour Technol; 2014 Sep; 167():14-23. PubMed ID: 24968107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic speciation in cattail (Typha latifolia) using chromatography and mass spectrometry.
    Lu X; Nguyen N; Gabos S; Le XC
    Mol Nutr Food Res; 2009 May; 53(5):566-71. PubMed ID: 19382145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of biosolids from an end-of-life municipal lagoon using cattail (Typha latifolia L.) and switchgrass (Panicum virgatum L.).
    Jeke NN; Hassan AO; Zvomuya F
    Int J Phytoremediation; 2017 Mar; 19(3):270-280. PubMed ID: 27593432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Sugarcane Straw Aging in the Field on Cell Wall Composition.
    Pagliuso D; Grandis A; de Sousa CR; de Souza AP; Driemeier C; Buckeridge MS
    Front Plant Sci; 2021; 12():652168. PubMed ID: 34335640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of oxalic acid pre-treatment and enzymatic saccharification in Typha latifolia for production of reducing sugar.
    Ramaiah SK; Thimappa GS; Nataraj LK; Dasgupta P
    J Genet Eng Biotechnol; 2020 Jul; 18(1):28. PubMed ID: 32648065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose.
    Pawar PM; Derba-Maceluch M; Chong SL; Gómez LD; Miedes E; Banasiak A; Ratke C; Gaertner C; Mouille G; McQueen-Mason SJ; Molina A; Sellstedt A; Tenkanen M; Mellerowicz EJ
    Plant Biotechnol J; 2016 Jan; 14(1):387-97. PubMed ID: 25960248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource.
    Larran A; Jozami E; Vicario L; Feldman SR; Podestá FE; Permingeat HR
    Bioresour Technol; 2015 Oct; 194():320-5. PubMed ID: 26210146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.