These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 28917918)

  • 1. Chitosan composite hydrogels reinforced with natural clay nanotubes.
    Huang B; Liu M; Zhou C
    Carbohydr Polym; 2017 Nov; 175():689-698. PubMed ID: 28917918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels.
    Huang B; Liu M; Long Z; Shen Y; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):303-310. PubMed ID: 27770895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitin-natural clay nanotubes hybrid hydrogel.
    Liu M; Zhang Y; Li J; Zhou C
    Int J Biol Macromol; 2013 Jul; 58():23-30. PubMed ID: 23535366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation.
    Zhao X; Luo Y; Tan P; Liu M; Zhou C
    Int J Biol Macromol; 2019 Jul; 132():406-415. PubMed ID: 30936014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of bioactive hydroxyapatite@halloysite and its effect on MC3T3-E1 osteogenic differentiation of chitosan film.
    Zheng J; Wu F; Li H; Liu M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110072. PubMed ID: 31546464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering.
    Liu M; Dai L; Shi H; Xiong S; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():700-712. PubMed ID: 25686999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration.
    Koosha M; Raoufi M; Moravvej H
    Colloids Surf B Biointerfaces; 2019 Jul; 179():270-279. PubMed ID: 30978614
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Luo Y; Mills DK
    Gels; 2019 Aug; 5(3):. PubMed ID: 31416252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering.
    Liu M; Wu C; Jiao Y; Xiong S; Zhou C
    J Mater Chem B; 2013 Apr; 1(15):2078-2089. PubMed ID: 32260898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility.
    Liu M; Zhang Y; Wu C; Xiong S; Zhou C
    Int J Biol Macromol; 2012 Nov; 51(4):566-75. PubMed ID: 22743347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Therapeutic Efficacy of Doxorubicin for Breast Cancer Using Chitosan Oligosaccharide-Modified Halloysite Nanotubes.
    Yang J; Wu Y; Shen Y; Zhou C; Li YF; He RR; Liu M
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26578-26590. PubMed ID: 27628202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan nanocomposite films based on halloysite nanotubes modification for potential biomedical applications.
    Xie M; Huang K; Yang F; Wang R; Han L; Yu H; Ye Z; Wu F
    Int J Biol Macromol; 2020 May; 151():1116-1125. PubMed ID: 31751717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of oxidized konjac glucomannan/carboxymethyl chitosan/graphene oxide hydrogel.
    Fan L; Yi J; Tong J; Zhou X; Ge H; Zou S; Wen H; Nie M
    Int J Biol Macromol; 2016 Oct; 91():358-67. PubMed ID: 27181577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-composite of poly(L-lactide) and halloysite nanotubes surface-grafted with L-lactide oligomer under microwave irradiation.
    Luo BH; Hsu CE; Li JH; Zhao LF; Liu MX; Wang XY; Zhou CR
    J Biomed Nanotechnol; 2013 Apr; 9(4):649-58. PubMed ID: 23621025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced mechanical, biomineralization, and cellular response of nanocomposite hydrogels by bioactive glass and halloysite nanotubes for bone tissue regeneration.
    Kumar A; Han SS
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112236. PubMed ID: 34474814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ag
    Nyankson E; Agyei-Tuffour B; Annan E; Yaya A; Mensah B; Onwona-Agyeman B; Amedalor R; Kwaku-Frimpong B; Efavi JK
    Heliyon; 2019 Jun; 5(6):e01969. PubMed ID: 31294116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of a chitosan based nanocomposite injectable hydrogel.
    Wang Q; Chen D
    Carbohydr Polym; 2016 Jan; 136():1228-37. PubMed ID: 26572466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of polymer-ceramic nanocomposites containing drug loaded modified halloysite nanotubes.
    Ghaderi-Ghahfarrokhi M; Haddadi-Asl V; Zargarian SS
    J Biomed Mater Res A; 2018 May; 106(5):1276-1287. PubMed ID: 29314595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan/halloysite nanotubes microcomposites: A double header approach for sustained release of ciprofloxacin and its hemostatic effects.
    Arshad MS; Qaiser M; Mahmood K; Shoaib MH; Ameer N; Ramzan N; Hanif M; Abbas G
    Int J Biol Macromol; 2022 Jul; 212():314-323. PubMed ID: 35618085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable chitosan-quince seed gum hydrogels encapsulated with curcumin loaded-halloysite nanotubes designed for tissue engineering application.
    Yavari Maroufi L; Ghorbani M
    Int J Biol Macromol; 2021 Apr; 177():485-494. PubMed ID: 33621578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.