BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28917952)

  • 1. Identification of potential allosteric communication pathways between functional sites of the bacterial ribosome by graph and elastic network models.
    Guzel P; Kurkcuoglu O
    Biochim Biophys Acta Gen Subj; 2017 Dec; 1861(12):3131-3141. PubMed ID: 28917952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring allosteric communication in multiple states of the bacterial ribosome using residue network analysis.
    Kürkçüoğlu Ö
    Turk J Biol; 2018; 42(5):392-404. PubMed ID: 30930623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Allosteric Signaling in the Exit Tunnel of the Bacterial Ribosome by Molecular Dynamics Simulations and Residue Network Model.
    Guzel P; Yildirim HZ; Yuce M; Kurkcuoglu O
    Front Mol Biosci; 2020; 7():586075. PubMed ID: 33102529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Investigation of a Mechanism of Allosteric Signal Transmission in Ribosomes.
    Makarov GI; Golovin AV; Sumbatyan NV; Bogdanov AA
    Biochemistry (Mosc); 2015 Aug; 80(8):1047-56. PubMed ID: 26547073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.
    Allain A; Chauvot de Beauchêne I; Langenfeld F; Guarracino Y; Laine E; Tchertanov L
    Faraday Discuss; 2014; 169():303-21. PubMed ID: 25340971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center.
    Cruz-Vera LR; New A; Squires C; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3140-6. PubMed ID: 17293420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center.
    Englander MT; Avins JL; Fleisher RC; Liu B; Effraim PR; Wang J; Schulten K; Leyh TS; Gonzalez RL; Cornish VW
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6038-43. PubMed ID: 25918365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Ribosome as an Allosterically Regulated Molecular Machine.
    Makarova TM; Bogdanov AA
    Biochemistry (Mosc); 2017 Dec; 82(13):1557-1571. PubMed ID: 29523059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the role of dimer interface in intrinsic dynamics and allosteric pathways underlying the functional transformation of DNMT3A.
    Liang Z; Hu J; Yan W; Jiang H; Hu G; Luo C
    Biochim Biophys Acta Gen Subj; 2018 Jul; 1862(7):1667-1679. PubMed ID: 29674125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric regulation of the ribosomal A site revealed by molecular dynamics simulations.
    Makarova TM; Bogdanov AA
    Biochimie; 2019 Dec; 167():179-186. PubMed ID: 31605738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling between global dynamics and signal transduction pathways: a mechanism of allostery for chaperonin GroEL.
    Chennubhotla C; Yang Z; Bahar I
    Mol Biosyst; 2008 Apr; 4(4):287-92. PubMed ID: 18354781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miscoding-induced stalling of substrate translocation on the bacterial ribosome.
    Alejo JL; Blanchard SC
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):E8603-E8610. PubMed ID: 28973849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the use of the antibiotic chloramphenicol to target polypeptide chain mimics to the ribosomal exit tunnel.
    Mamos P; Krokidis MG; Papadas A; Karahalios P; Starosta AL; Wilson DN; Kalpaxis DL; Dinos GP
    Biochimie; 2013 Sep; 95(9):1765-72. PubMed ID: 23770443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosome protection by antibiotic resistance ATP-binding cassette protein.
    Su W; Kumar V; Ding Y; Ero R; Serra A; Lee BST; Wong ASW; Shi J; Sze SK; Yang L; Gao YG
    Proc Natl Acad Sci U S A; 2018 May; 115(20):5157-5162. PubMed ID: 29712846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetry at the active site of the ribosome: structural and functional implications.
    Agmon I; Bashan A; Zarivach R; Yonath A
    Biol Chem; 2005 Sep; 386(9):833-44. PubMed ID: 16164408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional discrimination and propagation of local rearrangements along the ribosomal exit tunnel.
    Lu J; Deutsch C
    J Mol Biol; 2014 Dec; 426(24):4061-4073. PubMed ID: 25308341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state.
    Osterman IA; Khabibullina NF; Komarova ES; Kasatsky P; Kartsev VG; Bogdanov AA; Dontsova OA; Konevega AL; Sergiev PV; Polikanov YS
    Nucleic Acids Res; 2017 Jul; 45(12):7507-7514. PubMed ID: 28505372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication.
    Verkhivker GM
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):210-225. PubMed ID: 30339916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual effect of chloramphenicol peptides on ribosome inhibition.
    Bougas A; Vlachogiannis IA; Gatos D; Arenz S; Dinos GP
    Amino Acids; 2017 May; 49(5):995-1004. PubMed ID: 28283906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.