These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28917989)

  • 1. Shear strength of pharmaceutical tablets: Theoretical considerations, evaluation and relation with the capping tendency of biconvex tablets.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    Int J Pharm; 2017 Oct; 532(1):421-426. PubMed ID: 28917989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    J Pharm Sci; 2015 Dec; 104(12):4339-4344. PubMed ID: 26460539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical evaluation of the capping tendency of microcrystalline cellulose tablets during a diametrical compression test.
    Furukawa R; Chen Y; Horiguchi A; Takagaki K; Nishi J; Konishi A; Shirakawa Y; Sugimoto M; Narisawa S
    Int J Pharm; 2015 Sep; 493(1-2):182-91. PubMed ID: 26188313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.
    Podczeck F; Drake KR; Newton JM
    Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of different failure tests for pharmaceutical tablets: applicability of the Drucker-Prager failure criterion.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    Int J Pharm; 2014 Aug; 470(1-2):63-9. PubMed ID: 24810242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reevaluation of the diametral compression test for tablets using the flattened disc geometry.
    Mazel V; Guerard S; Croquelois B; Kopp JB; Girardot J; Diarra H; Busignies V; Tchoreloff P
    Int J Pharm; 2016 Nov; 513(1-2):669-677. PubMed ID: 27702696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile and shear methods for measuring strength of bilayer tablets.
    Chang SY; Li JX; Sun CC
    Int J Pharm; 2017 May; 523(1):121-126. PubMed ID: 28284920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-die evaluation of capping tendency of pharmaceutical tablets using force-displacement curve and stress relaxation parameter.
    Nakamura H; Sugino Y; Watano S
    Chem Pharm Bull (Tokyo); 2012; 60(6):772-7. PubMed ID: 22689430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of breaking tests for the characterization of the interfacial strength of bilayer tablets.
    Castrati L; Mazel V; Busignies V; Diarra H; Rossi A; Colombo P; Tchoreloff P
    Int J Pharm; 2016 Nov; 513(1-2):709-716. PubMed ID: 27717917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To Study Capping or Lamination Tendency of Tablets Through Evaluation of Powder Rheological Properties and Tablet Mechanical Properties of Directly Compressible Blends.
    Dudhat SM; Kettler CN; Dave RH
    AAPS PharmSciTech; 2017 May; 18(4):1177-1189. PubMed ID: 27422654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigations into the influence of the position of a breaking line on the tensile failure of flat, round, bevel-edged tablets using finite element methodology (FEM) and its practical relevance for industrial tablet strength testing.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2014 Dec; 477(1-2):306-16. PubMed ID: 25455775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensile strength and bonding in compacts: a comparison of diametral compression and three-point bending for plastically deforming materials.
    Amin MC; Fell JT
    Drug Dev Ind Pharm; 2002 Aug; 28(7):809-13. PubMed ID: 12236066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lamination of biconvex tablets: Numerical and experimental study.
    Mazel V; Diarra H; Malvestio J; Tchoreloff P
    Int J Pharm; 2018 May; 542(1-2):66-71. PubMed ID: 29526618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the complexity of predicting tablet capping.
    Meynard J; Amado-Becker F; Tchoreloff P; Mazel V
    Int J Pharm; 2022 Jul; 623():121949. PubMed ID: 35752387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing failure tests on pharmaceutical tablets: Interpretation using experimental results and a numerical approach with cohesive zone models.
    Mazel V; Girardot J; Kopp JB; Morel S; Tchoreloff P
    Int J Pharm; 2023 Jul; 642():123166. PubMed ID: 37356508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative correlation of the effect of process conditions on the capping tendencies of tablet formulations.
    Akseli I; Stecuła A; He X; Ladyzhynsky N
    J Pharm Sci; 2014 Jun; 103(6):1652-63. PubMed ID: 24668502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note on the Use of Diametrical Compression to Determine Tablet Tensile Strength.
    Hilden J; Polizzi M; Zettler A
    J Pharm Sci; 2017 Jan; 106(1):418-421. PubMed ID: 27686682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient Temperature Monitoring of Pharmaceutical Tablets During Compaction Using Infrared Thermography.
    Lee HP; Gulak Y; Cuitino AM
    AAPS PharmSciTech; 2018 Jul; 19(5):2426-2433. PubMed ID: 29869306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of several l-HPCs in preventing tablet capping during direct compression of metronidazole.
    Martino PD; Malaj L; Censi R; Martelli S; Joiris E; Barthélémy C
    Drug Dev Ind Pharm; 2007 Dec; 33(12):1308-17. PubMed ID: 18097804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of compression and decompression speed on the mechanical strength of compacts.
    Ruegger CE; Celik M
    Pharm Dev Technol; 2000; 5(4):485-94. PubMed ID: 11109248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.