These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 28918246)
21. Hydrothermal synthesis of hierarchically structured birnessite-type MnO Jung KW; Lee SY; Lee YJ Bioresour Technol; 2018 Jul; 260():204-212. PubMed ID: 29626779 [TBL] [Abstract][Full Text] [Related]
22. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution. Dong J; Shen L; Shan S; Liu W; Qi Z; Liu C; Gao X Sci Total Environ; 2022 Feb; 806(Pt 4):151442. PubMed ID: 34742966 [TBL] [Abstract][Full Text] [Related]
23. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Yao Y; Gao B; Inyang M; Zimmerman AR; Cao X; Pullammanappallil P; Yang L J Hazard Mater; 2011 Jun; 190(1-3):501-7. PubMed ID: 21497441 [TBL] [Abstract][Full Text] [Related]
24. Nitrate removal from aqueous solutions by adsorption onto hydrogel-rice husk biochar composite. Sadeghi Afjeh M; Bagheri Marandi G; Zohuriaan-Mehr MJ Water Environ Res; 2020 Jun; 92(6):934-947. PubMed ID: 31854048 [TBL] [Abstract][Full Text] [Related]
25. Black liquor-derived calcium-activated biochar for recovery of phosphate from aqueous solutions. Liu X; Shen F; Smith RL; Qi X Bioresour Technol; 2019 Dec; 294():122198. PubMed ID: 31574367 [TBL] [Abstract][Full Text] [Related]
26. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Zhang M; Gao B; Yao Y; Inyang M Chemosphere; 2013 Aug; 92(8):1042-7. PubMed ID: 23545188 [TBL] [Abstract][Full Text] [Related]
27. Manganese ferrite modified biochar from vinasse for enhanced adsorption of levofloxacin: Effects and mechanisms. Xu Z; Xiang Y; Zhou H; Yang J; He Y; Zhu Z; Zhou Y Environ Pollut; 2021 Mar; 272():115968. PubMed ID: 33187843 [TBL] [Abstract][Full Text] [Related]
28. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Li R; Wang JJ; Zhou B; Awasthi MK; Ali A; Zhang Z; Lahori AH; Mahar A Bioresour Technol; 2016 Sep; 215():209-214. PubMed ID: 26995322 [TBL] [Abstract][Full Text] [Related]
29. Enhanced removal of phosphate from aqueous solution using Mg/Fe modified biochar derived from excess activated sludge: removal mechanism and environmental risk. Zhang M; Yang J; Wang H; Lv Q; Xue J Environ Sci Pollut Res Int; 2021 Apr; 28(13):16282-16297. PubMed ID: 33389575 [TBL] [Abstract][Full Text] [Related]
30. Phosphate adsorption ability of biochar/Mg-Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl₂ as electrolyte. Jung KW; Jeong TU; Hwang MJ; Kim K; Ahn KH Bioresour Technol; 2015 Dec; 198():603-10. PubMed ID: 26433157 [TBL] [Abstract][Full Text] [Related]
31. Synthesis of amino-functionalized biochar/spinel ferrite magnetic composites for low-cost and efficient elimination of Ni(II) from wastewater. Guo Z; Chen R; Yang R; Yang F; Chen J; Li Y; Zhou R; Xu J Sci Total Environ; 2020 Jun; 722():137822. PubMed ID: 32199369 [TBL] [Abstract][Full Text] [Related]
32. Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water. Wang B; Lian G; Lee X; Gao B; Li L; Liu T; Zhang X; Zheng Y Chemosphere; 2020 Jan; 238():124684. PubMed ID: 31524621 [TBL] [Abstract][Full Text] [Related]
33. Kinetic and thermodynamic studies of the Co(II) and Ni(II) ions removal from aqueous solutions by Ca-Mg phosphates. Ivanets AI; Srivastava V; Kitikova NV; Shashkova IL; Sillanpää M Chemosphere; 2017 Mar; 171():348-354. PubMed ID: 28038418 [TBL] [Abstract][Full Text] [Related]
34. Enhanced adsorption of phosphate from pickling wastewater by Fe-N co-pyrolysis biochar: Performance, mechanism and reusability. Zhang C; Dong Y; Liu W; Yang D; Liu J; Lu Y; Lin H Bioresour Technol; 2023 Feb; 369():128263. PubMed ID: 36343782 [TBL] [Abstract][Full Text] [Related]
35. One-Step Pyrolysis Fabrication of Magnetic Bagasse Biochar Composites with Excellent Lead Adsorption Performance. Chang J; Yu S; Liao Y; Guan X; Gao H; Li Y ACS Omega; 2022 Nov; 7(47):42854-42864. PubMed ID: 36467949 [TBL] [Abstract][Full Text] [Related]
36. Efficiency and mechanism of phosphate adsorption and desorption of a novel Mg-loaded biochar material. Wang CY; Zhou HD; Wang Q; Xu BX; Zhu G Environ Sci Pollut Res Int; 2024 Jan; 31(3):4425-4438. PubMed ID: 38102434 [TBL] [Abstract][Full Text] [Related]
37. Synergistic role of inherent calcium and iron minerals in paper mill sludge biochar for phosphate adsorption. Yu J; Li X; Wu M; Lin K; Xu L; Zeng T; Shi H; Zhang M Sci Total Environ; 2022 Aug; 834():155193. PubMed ID: 35421460 [TBL] [Abstract][Full Text] [Related]
38. Biochar synthesized via pyrolysis of Broussonetia papyrifera leaves: mechanisms and potential applications for phosphate removal. Qiu G; Zhao Y; Wang H; Tan X; Chen F; Hu X Environ Sci Pollut Res Int; 2019 Mar; 26(7):6565-6575. PubMed ID: 30623334 [TBL] [Abstract][Full Text] [Related]
39. Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms. Xiang Y; Yang X; Xu Z; Hu W; Zhou Y; Wan Z; Yang Y; Wei Y; Yang J; Tsang DCW Sci Total Environ; 2020 Mar; 709():136079. PubMed ID: 31884293 [TBL] [Abstract][Full Text] [Related]
40. Fabrication and characterization of a novel Ba Khalid W; Cheng CK; Liu P; Tang J; Liu X; Ali A; Shahab A; Wang X Chemosphere; 2022 Sep; 303(Pt 3):135233. PubMed ID: 35675872 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]