BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 28918311)

  • 1. Structural basis for the potent and selective binding of LDN-212854 to the BMP receptor kinase ALK2.
    Williams E; Bullock AN
    Bone; 2018 Apr; 109():251-258. PubMed ID: 28918311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and structure-activity relationships of a novel and selective bone morphogenetic protein receptor (BMP) inhibitor derived from the pyrazolo[1.5-a]pyrimidine scaffold of dorsomorphin: the discovery of ML347 as an ALK2 versus ALK3 selective MLPCN probe.
    Engers DW; Frist AY; Lindsley CW; Hong CC; Hopkins CR
    Bioorg Med Chem Lett; 2013 Jun; 23(11):3248-52. PubMed ID: 23639540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation.
    van Dinther M; Visser N; de Gorter DJ; Doorn J; Goumans MJ; de Boer J; ten Dijke P
    J Bone Miner Res; 2010 Jun; 25(6):1208-15. PubMed ID: 19929436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an ALK2-biased BMP type I receptor kinase inhibitor.
    Mohedas AH; Xing X; Armstrong KA; Bullock AN; Cuny GD; Yu PB
    ACS Chem Biol; 2013; 8(6):1291-302. PubMed ID: 23547776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification.
    Culbert AL; Chakkalakal SA; Theosmy EG; Brennan TA; Kaplan FS; Shore EM
    Stem Cells; 2014 May; 32(5):1289-300. PubMed ID: 24449086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BMP type I receptor inhibition reduces heterotopic [corrected] ossification.
    Yu PB; Deng DY; Lai CS; Hong CC; Cuny GD; Bouxsein ML; Hong DW; McManus PM; Katagiri T; Sachidanandan C; Kamiya N; Fukuda T; Mishina Y; Peterson RT; Bloch KD
    Nat Med; 2008 Dec; 14(12):1363-9. PubMed ID: 19029982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva.
    Chaikuad A; Alfano I; Kerr G; Sanvitale CE; Boergermann JH; Triffitt JT; von Delft F; Knapp S; Knaus P; Bullock AN
    J Biol Chem; 2012 Oct; 287(44):36990-8. PubMed ID: 22977237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants.
    Mohedas AH; Wang Y; Sanvitale CE; Canning P; Choi S; Xing X; Bullock AN; Cuny GD; Yu PB
    J Med Chem; 2014 Oct; 57(19):7900-15. PubMed ID: 25101911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel mutation of ALK2, L196P, found in the most benign case of fibrodysplasia ossificans progressiva activates BMP-specific intracellular signaling equivalent to a typical mutation, R206H.
    Ohte S; Shin M; Sasanuma H; Yoneyama K; Akita M; Ikebuchi K; Jimi E; Maruki Y; Matsuoka M; Namba A; Tomoda H; Okazaki Y; Ohtake A; Oda H; Owan I; Yoda T; Furuya H; Kamizono J; Kitoh H; Nakashima Y; Susami T; Haga N; Komori T; Katagiri T
    Biochem Biophys Res Commun; 2011 Apr; 407(1):213-8. PubMed ID: 21377447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ALK2 inhibitor, BLU-782, prevents heterotopic ossification in a mouse model of fibrodysplasia ossificans progressiva.
    Davis AJ; Brooijmans N; Brubaker JD; Stevison F; LaBranche TP; Albayya F; Fleming P; Hodous BL; Kim JL; Kim S; Lobbardi R; Palmer M; Sheets MP; Vassiliadis J; Wang R; Williams BD; Wilson D; Xu L; Zhu XJ; Bouchard K; Hunter JW; Graul C; Greenblatt E; Hussein A; Lyon M; Russo J; Stewart R; Dorsch M; Guzi TJ; Kadambi V; Lengauer C; Garner AP
    Sci Transl Med; 2024 May; 16(749):eabp8334. PubMed ID: 38809966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of New Therapeutic Agents for Fibrodysplasia Ossificans Progressiva.
    Luo Y; Alsamarah A; Zhang K; Hao J
    Curr Mol Med; 2016; 16(1):4-11. PubMed ID: 26695699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACVR1-Fc suppresses BMP signaling and chondro-osseous differentiation in an in vitro model of Fibrodysplasia ossificans progressiva.
    Pang J; Zuo Y; Chen Y; Song L; Zhu Q; Yu J; Shan C; Cai Z; Hao J; Kaplan FS; Shore EM; Zhang K
    Bone; 2016 Nov; 92():29-36. PubMed ID: 27492611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neofunction of ACVR1 in fibrodysplasia ossificans progressiva.
    Hino K; Ikeya M; Horigome K; Matsumoto Y; Ebise H; Nishio M; Sekiguchi K; Shibata M; Nagata S; Matsuda S; Toguchida J
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15438-43. PubMed ID: 26621707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2.
    Fujimoto M; Ohte S; Shin M; Yoneyama K; Osawa K; Miyamoto A; Tsukamoto S; Mizuta T; Kokabu S; Machiya A; Okuda A; Suda N; Katagiri T
    Biochem Biophys Res Commun; 2014 Dec; 455(3-4):347-52. PubMed ID: 25446088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of a novel 2-aminopyrazine-3-carboxamide as a potent and selective inhibitor of Activin Receptor-Like Kinase-2 (ALK2) for the treatment of fibrodysplasia ossificans progressiva.
    Ullrich T; Arista L; Weiler S; Teixeira-Fouchard S; Broennimann V; Stiefl N; Head V; Kramer I; Guth S
    Bioorg Med Chem Lett; 2022 May; 64():128667. PubMed ID: 35276359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutively activated ALK2 and increased SMAD1/5 cooperatively induce bone morphogenetic protein signaling in fibrodysplasia ossificans progressiva.
    Fukuda T; Kohda M; Kanomata K; Nojima J; Nakamura A; Kamizono J; Noguchi Y; Iwakiri K; Kondo T; Kurose J; Endo K; Awakura T; Fukushi J; Nakashima Y; Chiyonobu T; Kawara A; Nishida Y; Wada I; Akita M; Komori T; Nakayama K; Nanba A; Maruki Y; Yoda T; Tomoda H; Yu PB; Shore EM; Kaplan FS; Miyazono K; Matsuoka M; Ikebuchi K; Ohtake A; Oda H; Jimi E; Owan I; Okazaki Y; Katagiri T
    J Biol Chem; 2009 Mar; 284(11):7149-56. PubMed ID: 18684712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel bicyclic pyrazoles as potent ALK2 (R206H) inhibitors for the treatment of fibrodysplasia ossificans progressiva.
    Yamamoto H; Sakai N; Ohte S; Sato T; Sekimata K; Matsumoto T; Nakamura K; Watanabe H; Mishima-Tsumagari C; Tanaka A; Hashizume Y; Honma T; Katagiri T; Miyazono K; Tomoda H; Shirouzu M; Koyama H
    Bioorg Med Chem Lett; 2021 Apr; 38():127858. PubMed ID: 33609658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations of activated ACVR1/ALK2, a bone morphogenetic protein type I receptor, that causes fibrodysplasia ossificans progressiva.
    Kaplan FS; Seemann P; Haupt J; Xu M; Lounev VY; Mullins M; Shore EM
    Methods Enzymol; 2010; 484():357-73. PubMed ID: 21036241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant activin-like kinase 2 in fibrodysplasia ossificans progressiva are activated via T203 by BMP type II receptors.
    Fujimoto M; Ohte S; Osawa K; Miyamoto A; Tsukamoto S; Mizuta T; Kokabu S; Suda N; Katagiri T
    Mol Endocrinol; 2015 Jan; 29(1):140-52. PubMed ID: 25354296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variant BMP receptor mutations causing fibrodysplasia ossificans progressiva (FOP) in humans show BMP ligand-independent receptor activation in zebrafish.
    Mucha BE; Hashiguchi M; Zinski J; Shore EM; Mullins MC
    Bone; 2018 Apr; 109():225-231. PubMed ID: 29307777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.