BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 28918319)

  • 21. Caffeine adsorption of montmorillonite in coffee extracts.
    Shiono T; Yamamoto K; Yotsumoto Y; Yoshida A
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1591-1597. PubMed ID: 28622119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chlorogenic acids and lactones in regular and water-decaffeinated arabica coffees.
    Farah A; de Paulis T; Moreira DP; Trugo LC; Martin PR
    J Agric Food Chem; 2006 Jan; 54(2):374-81. PubMed ID: 16417293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of nutritional descriptors of roasting intensity in beverages of Arabica and Robusta coffee beans.
    Bicho NC; Leitão AE; Ramalho JC; De Alvarenga NB; Lidon FC
    Int J Food Sci Nutr; 2011 Dec; 62(8):865-71. PubMed ID: 22032554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Salting-out gradients in centrifugal partition chromatography for the isolation of chlorogenic acids from green coffee beans.
    Romero-González RR; Verpoorte R
    J Chromatogr A; 2009 May; 1216(19):4245-51. PubMed ID: 19233365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective enzymatic hydrolysis of chlorogenic acid lactones in a model system and in a coffee extract. Application to reduction of coffee bitterness.
    Kraehenbuehl K; Page-Zoerkler N; Mauroux O; Gartenmann K; Blank I; Bel-Rhlid R
    Food Chem; 2017 Mar; 218():9-14. PubMed ID: 27719962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical and sensory evaluation of cold brew coffees using different roasting profiles and brewing methods.
    Córdoba N; Moreno FL; Osorio C; Velásquez S; Ruiz Y
    Food Res Int; 2021 Mar; 141():110141. PubMed ID: 33642008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure- and dose-absorption relationships of coffee polyphenols.
    Erk T; Hauser J; Williamson G; Renouf M; Steiling H; Dionisi F; Richling E
    Biofactors; 2014; 40(1):103-12. PubMed ID: 23553742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coffee polyphenols improve peripheral endothelial function after glucose loading in healthy male adults.
    Ochiai R; Sugiura Y; Shioya Y; Otsuka K; Katsuragi Y; Hashiguchi T
    Nutr Res; 2014 Feb; 34(2):155-9. PubMed ID: 24461317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans.
    Iwai K; Kishimoto N; Kakino Y; Mochida K; Fujita T
    J Agric Food Chem; 2004 Jul; 52(15):4893-8. PubMed ID: 15264931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-line monitoring of in-vitro oral bioaccessibility tests as front-end to liquid chromatography for determination of chlorogenic acid isomers in dietary supplements.
    Kremr D; Cocovi-Solberg DJ; Bajerová P; Ventura K; Miró M
    Talanta; 2017 May; 166():391-398. PubMed ID: 28213251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SPE-HPLC Determination of Chlorogenic and Phenolic Acids in Coffee.
    Köseoglu Yilmaz P; Kolak U
    J Chromatogr Sci; 2017 Aug; 55(7):712-718. PubMed ID: 28334920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of roasting on the formation of chlorogenic acid lactones in coffee.
    Farah A; de Paulis T; Trugo LC; Martin PR
    J Agric Food Chem; 2005 Mar; 53(5):1505-13. PubMed ID: 15740032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of 5-caffeoylquinic acid (5-CQA) as one of the major classes of chlorogenic acid in commercial tea and coffee samples.
    Nevena GL; Branislava R; Emilia S; Dusica R; Ivan N; Nebojsa K; Biljana B
    Vojnosanit Pregl; 2015 Nov; 72(11):1018-23. PubMed ID: 26731977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contents of chlorogenic acids and caffeine in various coffee-related products.
    Jeon JS; Kim HT; Jeong IH; Hong SR; Oh MS; Yoon MH; Shim JH; Jeong JH; Abd El-Aty AM
    J Adv Res; 2019 May; 17():85-94. PubMed ID: 31193351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discrimination of Brazilian arabica green coffee samples by chlorogenic acid composition.
    Moreira RF; Trugo LC; de Maria CA; Matos AG; Santos SM; Leite JM
    Arch Latinoam Nutr; 2001 Mar; 51(1):95-9. PubMed ID: 11515239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of asparaginase for acrylamide mitigation in coffee and its influence on the content of caffeine, chlorogenic acid, and caffeic acid.
    Corrêa CLO; das Merces Penha E; Dos Anjos MR; Pacheco S; Freitas-Silva O; Luna AS; Gottschalk LMF
    Food Chem; 2021 Feb; 338():128045. PubMed ID: 33091987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. UHPLC-ESI-QqTOF-MS/MS characterization of minor chlorogenic acids in roasted Coffea arabica from different geographical origin.
    De Rosso M; Colomban S; Flamini R; Navarini L
    J Mass Spectrom; 2018 Sep; 53(9):763-771. PubMed ID: 29974575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Liquid chromatography-electrospray ionization-tandem mass spectrometry for simultaneous analysis of chlorogenic acids and their metabolites in human plasma.
    Matsui Y; Nakamura S; Kondou N; Takasu Y; Ochiai R; Masukawa Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Oct; 858(1-2):96-105. PubMed ID: 17766198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Simultaneous determination of 6 phenolic acids in coffee beans by reversed-phase high performance liquid chromatography].
    Long W; Zhang S; Yuan L; Li Y; Liu Z
    Se Pu; 2011 May; 29(5):439-42. PubMed ID: 21847980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chlorogenic acid-arabinose hybrid domains in coffee melanoidins: Evidences from a model system.
    Moreira AS; Coimbra MA; Nunes FM; Passos CP; Santos SA; Silvestre AJ; Silva AM; Rangel M; Domingues MR
    Food Chem; 2015 Oct; 185():135-44. PubMed ID: 25952851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.