BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 28918914)

  • 1. Analysis of Genomes and Transcriptomes of Hepatocellular Carcinomas Identifies Mutations and Gene Expression Changes in the Transforming Growth Factor-β Pathway.
    Chen J; Zaidi S; Rao S; Chen JS; Phan L; Farci P; Su X; Shetty K; White J; Zamboni F; Wu X; Rashid A; Pattabiraman N; Mazumder R; Horvath A; Wu RC; Li S; Xiao C; Deng CX; Wheeler DA; Mishra B; Akbani R; Mishra L
    Gastroenterology; 2018 Jan; 154(1):195-210. PubMed ID: 28918914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPTBN1 inhibits inflammatory responses and hepatocarcinogenesis via the stabilization of SOCS1 and downregulation of p65 in hepatocellular carcinoma.
    Lin L; Chen S; Wang H; Gao B; Kallakury B; Bhuvaneshwar K; Cahn K; Gusev Y; Wang X; Wu Y; Marshall JL; Zhi X; He AR
    Theranostics; 2021; 11(9):4232-4250. PubMed ID: 33754058
    [No Abstract]   [Full Text] [Related]  

  • 3. Smad4 overexpression in hepatocellular carcinoma is strongly associated with transforming growth factor beta II receptor immunolabeling.
    Torbenson M; Marinopoulos S; Dang DT; Choti M; Ashfaq R; Maitra A; Boitnott J; Wilentz RE
    Hum Pathol; 2002 Sep; 33(9):871-6. PubMed ID: 12378510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail.
    Moon H; Ju HL; Chung SI; Cho KJ; Eun JW; Nam SW; Han KH; Calvisi DF; Ro SW
    Gastroenterology; 2017 Nov; 153(5):1378-1391.e6. PubMed ID: 28734833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1.
    Yang L; Inokuchi S; Roh YS; Song J; Loomba R; Park EJ; Seki E
    Gastroenterology; 2013 May; 144(5):1042-1054.e4. PubMed ID: 23391818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features.
    Sia D; Jiao Y; Martinez-Quetglas I; Kuchuk O; Villacorta-Martin C; Castro de Moura M; Putra J; Camprecios G; Bassaganyas L; Akers N; Losic B; Waxman S; Thung SN; Mazzaferro V; Esteller M; Friedman SL; Schwartz M; Villanueva A; Llovet JM
    Gastroenterology; 2017 Sep; 153(3):812-826. PubMed ID: 28624577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired reciprocal regulation between SIRT6 and TGF-β signaling in fatty liver.
    Xiang X; Ohshiro K; Zaidi S; Yang X; Bhowmick K; Vegesna AK; Bernstein D; Crawford JM; Mishra B; Latham PS; Gough NR; Rao S; Mishra L
    FASEB J; 2022 Jun; 36(6):e22335. PubMed ID: 35506565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Analysis of Cytostatic TGF-Beta Response in Mesenchymal-Like Hepatocellular Carcinoma Cell Lines.
    Gungor MZ; Uysal M; Ozturk M; Senturk S
    J Gastrointest Cancer; 2021 Dec; 52(4):1320-1335. PubMed ID: 34463913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets.
    Boyault S; Rickman DS; de Reyniès A; Balabaud C; Rebouissou S; Jeannot E; Hérault A; Saric J; Belghiti J; Franco D; Bioulac-Sage P; Laurent-Puig P; Zucman-Rossi J
    Hepatology; 2007 Jan; 45(1):42-52. PubMed ID: 17187432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting the effect of targeting the epidermal growth factor receptor on TGF-β-induced-apoptosis in human hepatocellular carcinoma cells.
    Caja L; Sancho P; Bertran E; Fabregat I
    J Hepatol; 2011 Aug; 55(2):351-8. PubMed ID: 21147185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AXIN deficiency in human and mouse hepatocytes induces hepatocellular carcinoma in the absence of β-catenin activation.
    Abitbol S; Dahmani R; Coulouarn C; Ragazzon B; Mlecnik B; Senni N; Savall M; Bossard P; Sohier P; Drouet V; Tournier E; Dumont F; Sanson R; Calderaro J; Zucman-Rossi J; Vasseur-Cognet M; Just PA; Terris B; Perret C; Gilgenkrantz H
    J Hepatol; 2018 Jun; 68(6):1203-1213. PubMed ID: 29525529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of Smad7 in hepatocellular carcinoma and dysplastic nodules: resistance mechanism to transforming growth factor-beta.
    Park YN; Chae KJ; Oh BK; Choi J; Choi KS; Park C
    Hepatogastroenterology; 2004; 51(56):396-400. PubMed ID: 15086168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TGF-beta inactivation and TGF-alpha overexpression cooperate in an in vivo mouse model to induce hepatocellular carcinoma that recapitulates molecular features of human liver cancer.
    Baek JY; Morris SM; Campbell J; Fausto N; Yeh MM; Grady WM
    Int J Cancer; 2010 Sep; 127(5):1060-71. PubMed ID: 20020490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Discovery of Niclosamide Ethanolamine, a Repurposed Drug Candidate That Reduces Growth of Hepatocellular Carcinoma Cells In Vitro and in Mice by Inhibiting Cell Division Cycle 37 Signaling.
    Chen B; Wei W; Ma L; Yang B; Gill RM; Chua MS; Butte AJ; So S
    Gastroenterology; 2017 Jun; 152(8):2022-2036. PubMed ID: 28284560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and Epigenomic Features of Primary and Recurrent Hepatocellular Carcinomas.
    Ding X; He M; Chan AWH; Song QX; Sze SC; Chen H; Man MKH; Man K; Chan SL; Lai PBS; Wang X; Wong N
    Gastroenterology; 2019 Dec; 157(6):1630-1645.e6. PubMed ID: 31560893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced transforming growth factor-beta receptor II expression in hepatocellular carcinoma correlates with intrahepatic metastasis.
    Mamiya T; Yamazaki K; Masugi Y; Mori T; Effendi K; Du W; Hibi T; Tanabe M; Ueda M; Takayama T; Sakamoto M
    Lab Invest; 2010 Sep; 90(9):1339-45. PubMed ID: 20531292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IGFBP-3 expression in hepatocellular carcinoma involves abnormalities in TGF-beta and/or Rb signaling pathways.
    Yumoto E; Nakatsukasa H; Hanafusa T; Yumoto Y; Nouso K; Matsumoto E; Onishi T; Takuma Y; Tanaka H; Fujikawa T; Suzuki M; Uemura M; Shiratori Y
    Int J Oncol; 2005 Nov; 27(5):1223-30. PubMed ID: 16211216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. βII-Spectrin (SPTBN1) suppresses progression of hepatocellular carcinoma and Wnt signaling by regulation of Wnt inhibitor kallistatin.
    Zhi X; Lin L; Yang S; Bhuvaneshwar K; Wang H; Gusev Y; Lee MH; Kallakury B; Shivapurkar N; Cahn K; Tian X; Marshall JL; Byers SW; He AR
    Hepatology; 2015 Feb; 61(2):598-612. PubMed ID: 25307947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib.
    Lachenmayer A; Alsinet C; Savic R; Cabellos L; Toffanin S; Hoshida Y; Villanueva A; Minguez B; Newell P; Tsai HW; Barretina J; Thung S; Ward SC; Bruix J; Mazzaferro V; Schwartz M; Friedman SL; Llovet JM
    Clin Cancer Res; 2012 Sep; 18(18):4997-5007. PubMed ID: 22811581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming growth factor betas and their signaling receptors in human hepatocellular carcinoma.
    Abou-Shady M; Baer HU; Friess H; Berberat P; Zimmermann A; Graber H; Gold LI; Korc M; Büchler MW
    Am J Surg; 1999 Mar; 177(3):209-15. PubMed ID: 10219856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.