These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 28919029)

  • 41. Separable arrowhead microneedles.
    Chu LY; Prausnitz MR
    J Control Release; 2011 Feb; 149(3):242-9. PubMed ID: 21047538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing.
    Tandon V; Kang WS; Robbins TA; Spencer AJ; Kim ES; McKenna MJ; Kujawa SG; Fiering J; Pararas EE; Mescher MJ; Sewell WF; Borenstein JT
    Lab Chip; 2016 Mar; 16(5):829-46. PubMed ID: 26778829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microneedle-based drug delivery systems for transdermal route.
    Pierre MB; Rossetti FC
    Curr Drug Targets; 2014 Mar; 15(3):281-91. PubMed ID: 24144208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfluidic Devices for Drug Delivery Systems and Drug Screening.
    Damiati S; Kompella UB; Damiati SA; Kodzius R
    Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29462948
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A key role by polymers in microneedle technology: a new era.
    Rajput A; Kulkarni M; Deshmukh P; Pingale P; Garkal A; Gandhi S; Butani S
    Drug Dev Ind Pharm; 2021 Nov; 47(11):1713-1732. PubMed ID: 35332822
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microneedles for transdermal drug delivery: a systematic review.
    Dharadhar S; Majumdar A; Dhoble S; Patravale V
    Drug Dev Ind Pharm; 2019 Feb; 45(2):188-201. PubMed ID: 30348022
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.
    Verma N; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advances of Microneedles in Biomedical Applications.
    Xu J; Xu D; Xuan X; He H
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641460
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microneedles as transdermal delivery systems: combination with other enhancing strategies.
    Nava-Arzaluz MG; Calderon-Lojero I; Quintanar-Guerrero D; Villalobos-Garcia R; Ganem-Quintanar A
    Curr Drug Deliv; 2012 Jan; 9(1):57-73. PubMed ID: 21864254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanocomposite hydrogel microneedles: a theranostic toolbox for personalized medicine.
    Martins CF; García-Astrain C; Conde J; Liz-Marzán LM
    Drug Deliv Transl Res; 2024 Aug; 14(8):2262-2275. PubMed ID: 38376619
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lab-on-CMOS integration of microfluidics and electrochemical sensors.
    Huang Y; Mason AJ
    Lab Chip; 2013 Oct; 13(19):3929-34. PubMed ID: 23939616
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Micro and nanoneedles for drug delivery and biosensing.
    Kathuria H; Kochhar JS; Kang L
    Ther Deliv; 2018 Jul; 9(7):489-492. PubMed ID: 29943686
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent advances in the administration of vaccines for infectious diseases: microneedles as painless delivery devices for mass vaccination.
    Hegde NR; Kaveri SV; Bayry J
    Drug Discov Today; 2011 Dec; 16(23-24):1061-8. PubMed ID: 21782969
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An overview on the advantages and limitations of 3D printing of microneedles.
    Ozyilmaz ED; Turan A; Comoglu T
    Pharm Dev Technol; 2021 Nov; 26(9):923-933. PubMed ID: 34369288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BioMEMS in drug delivery.
    Nuxoll E
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1611-25. PubMed ID: 23856413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidic cell chips for high-throughput drug screening.
    Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S
    Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population.
    Duarah S; Sharma M; Wen J
    Eur J Pharm Biopharm; 2019 Mar; 136():48-69. PubMed ID: 30633972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An update on microneedle-based systems for diabetes.
    Li WX; Zhang XP; Chen BZ; Fei WM; Cui Y; Zhang CY; Guo XD
    Drug Deliv Transl Res; 2022 Oct; 12(10):2275-2286. PubMed ID: 35112330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays.
    van der Maaden K; Luttge R; Vos PJ; Bouwstra J; Kersten G; Ploemen I
    Drug Deliv Transl Res; 2015 Aug; 5(4):397-406. PubMed ID: 26044672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.